An intelligent model for prediction of abiotic stress-responsive microRNAs in plants using statistical moments based features and ensemble approaches

被引:0
|
作者
Naseem, Ansar [1 ]
Khan, Yaser Daanial [2 ]
机构
[1] Univ Management & Technol, Sch Syst & Technol, Dept Artificial Intelligence, Lahore, Pakistan
[2] Univ Management & Technol, Sch Syst & Technol, Dept Comp Sci, Lahore, Pakistan
关键词
Plants genomics; Abiotic stress; Ensemble machine learning; IDENTIFICATION; SITES; PEPTIDES; PROTEINS; POSITION;
D O I
10.1016/j.ymeth.2024.05.008
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This study proposed an intelligent model for predicting abiotic stress-responsive microRNAs in plants. MicroRNAs (miRNAs) are short RNA molecules regulates the stress in genes. Experimental methods are costly and time-consuming, as compare to in-silico prediction. Addressing this gap, the study seeks to develop an efficient computational model for plant stress response prediction. The two benchmark datasets for MiRNA and PreMiRNA dataset have been acquired in this study. Four ensemble approaches such as bagging, boosting, stacking, and blending have been employed. Classifiers such as Random Forest (RF), Extra Trees (ET), Ada Boost (ADB), Light Gradient Boosting Machine (LGBM), and Support Vector Machine (SVM). Stacking and Blending employed all stated classifiers as base learners and Logistic Regression (LR) as Meta Classifier. There have been a total of four types of testing used, including independent set, self-consistency, cross-validation with 5 and 10 folds, and jackknife. This study has utilized evaluation metrics such as accuracy score, specificity, sensitivity, Mathew 's correlation coefficient (MCC), and AUC. Our proposed methodology has outperformed existing state of the art study in both datasets based on independent set testing. The SVM-based approach has exhibited accuracy score of 0.659 for the MiRNA dataset, which is better than the previous study. The ET classifier has surpassed the accuracy of Pre-MiRNA dataset as compared to the existing benchmark study, achieving an impressive score of 0.67. The proposed method can be used in future research to predict abiotic stresses in plants.
引用
收藏
页码:65 / 79
页数:15
相关论文
共 21 条
  • [21] Reservoir horizontal principle stress prediction using intelligent fusion model based on physical model constraints: a case study of Daji Block, Eastern Ordos Basin, North China
    Lin, Haiyu
    Liu, Xiangjun
    Xiong, Jian
    Liang, Lixi
    Wu, Jianjun
    Li, Bing
    ACTA GEOPHYSICA, 2024, 72 (04) : 2565 - 2579