Detection of Slowloris Attacks using Machine Learning Algorithms

被引:1
|
作者
Rios, Vinicius de Miranda [1 ]
Inacio, Pedro R. M. [2 ]
Magoni, Damien [3 ]
Freire, Mario M. [2 ]
机构
[1] Inst Fed Educ Ciencia & Tecnol Tocantins, Palmas, Tocantins, Brazil
[2] Univ Beira Interior, Inst Telecomunicacoes, Covilha, Portugal
[3] Univ Bordeaux, LaBRI, CNRS, Talence, France
关键词
Denial of Service (DoS) attack; fuzzy logic; low-rate DoS attack; machine learning; Slowloris; DDOS DETECTION;
D O I
10.1145/3605098.3635919
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Slowloris attack, a variant of the slow Denial-of-Service (DoS) attack, is a stealthy threat that aims to take down web services provided by companies and institutions. It is able to pass through the traditional defense systems, due to the low amount and high latency of its attack traffic, often mimicking legitimate user traffic. Therefore, it is necessary to investigate techniques that can detect and mitigate this type of attack and simultaneously prevent legitimate user traffic from being blocked. In this work, we investigate nine machine learning algorithms for detecting Slowloris attacks, as well as a new combination based on Fuzzy Logic (FL), Random Forest (RF), and Euclidean Distance (ED) that we call FRE. We first generate Slowloris attack traffic traces in various environments. We then assess these algorithms under two scenarios: hyperparameters with default values and optimized hyperparameters. We show that most of these machine learning algorithms perform very well, with the random forest leading to the best classification results with test accuracy values reaching 99.52%. We also show that our FRE method outperforms all these algorithms, with test accuracy values reaching 99.8%.
引用
收藏
页码:1321 / 1330
页数:10
相关论文
共 50 条
  • [41] Ship Detection Approach Using Machine Learning Algorithms
    Hashi, Abdirahman Osman
    Hussein, Ibrahim Hassan
    Rodriguez, Octavio Ernesto Romo
    Abdirahman, Abdullahi Ahmed
    Elmi, Mohamed Abdirahman
    ADVANCES ON INTELLIGENT INFORMATICS AND COMPUTING: HEALTH INFORMATICS, INTELLIGENT SYSTEMS, DATA SCIENCE AND SMART COMPUTING, 2022, 127 : 16 - 25
  • [42] Bridge damage detection using machine learning algorithms
    Abedin, Mohammad
    Mokhtari, Sohrab
    Mehrabi, Armin B.
    HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS XV, 2021, 11593
  • [43] Early Delirium Detection Using Machine Learning Algorithms
    Figueiredo, Celia
    Braga, Ana Cristina
    Mariz, Jose
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2022 WORKSHOPS, PT I, 2022, 13377 : 555 - 570
  • [44] Breast Cancer Detection Using Machine Learning Algorithms
    Sharma, Shubham
    Aggarwal, Archit
    Choudhury, Tanupriya
    PROCEEDINGS OF THE 2018 INTERNATIONAL CONFERENCE ON COMPUTATIONAL TECHNIQUES, ELECTRONICS AND MECHANICAL SYSTEMS (CTEMS), 2018, : 114 - 118
  • [45] On using machine learning algorithms for motorcycle collision detection
    Rodegast, Philipp
    Maier, Steffen
    Kneifl, Jonas
    Fehr, Joerg
    DISCOVER APPLIED SCIENCES, 2024, 6 (06)
  • [46] Protection against Adversarial Attacks on Malware Detectors Using Machine Learning Algorithms
    Marshev, I. I.
    Zhukovskii, E., V
    Aleksandrova, E. B.
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2021, 55 (08) : 1025 - 1028
  • [47] Predicting DDoS Attacks Using Machine Learning Algorithms in Building Management Systems
    Avci, Isa
    Koca, Murat
    ELECTRONICS, 2023, 12 (19)
  • [48] Security Analysis of DDoS Attacks Using Machine Learning Algorithms in Networks Traffic
    Alzahrani, Rami J.
    Alzahrani, Ahmed
    ELECTRONICS, 2021, 10 (23)
  • [49] Protection against Adversarial Attacks on Malware Detectors Using Machine Learning Algorithms
    I. I. Marshev
    E. V. Zhukovskii
    E. B. Aleksandrova
    Automatic Control and Computer Sciences, 2021, 55 : 1025 - 1028
  • [50] Network Intrusion Detection Using Machine Learning Anomaly Detection Algorithms
    Hanifi, Khadija
    Bank, Hasan
    Karsligil, M. Elif
    Yavuz, A. Gokhan
    Guvensan, M. Amac
    2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,