Plasmonic Toroidal Vortices

被引:2
|
作者
Yang, Da-Jie [1 ,2 ]
Li, Yang [3 ]
Zhang, Ye-Qi [1 ]
Liu, Lu [1 ]
Xie, Yuan-Hao [1 ]
Fu, Xingqiu [1 ]
Liu, Ji-Cai [1 ,2 ]
Wang, Qu-Quan [3 ,4 ]
机构
[1] North China Elect Power Univ, Sch Math & Phys, Beijing 102206, Peoples R China
[2] North China Elect Power Univ, Hebei Key Lab Phys & Energy Technol, Baoding 071000, Peoples R China
[3] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
[4] Quantum Sci Ctr Guangdong Hong Kong Macao Greater, Shenzhen 518045, Peoples R China
基金
中国国家自然科学基金;
关键词
plasmon; plasmonic toroidal vortex; radially-polarized beam; toroidal vortex; vortex ring; ORBITAL ANGULAR-MOMENTUM; BREATHING MODES; LIGHT;
D O I
10.1002/lpor.202400474
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Toroidal vortices, or vortex rings, are torus-shaped vortices observed in various fluid systems. Recently, optical toroidal vortices, novel solutions to Maxwell's equations, have been experimentally observed (Nat. Photonics, 2022, 16, 519). Thus, their nanoplasmonic counterparts, namely plasmonic toroidal vortices, are highly anticipated. This study aims to elucidate the generation and manifestation of plasmonic toroidal vortices. To achieve this, a technique involving the illumination of a gold nanotorus with a radially-polarized beam is employed. Notably, the plasmonic toroidal vortices exhibit a distinct photon flow trajectory along the minor radius of a nanotorus. This work presents an advancement in toroidal vortices within the plasmonic regime. The study reports the manifestation and formation of plasmonic toroidal vortices, a counterpart to toroidal vortices observed in fluid systems and recently in optics. Through illuminating a plasmonic nanotorus with a radially-polarized beam, a novel photon flow along the nanotorus's minor radius, identified as plasmonic toroidal vortex is observed. This finding contributes to the understanding of toroidal vortices within the plasmonic realm. image
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Bosons in a toroidal trap: Ground state and vortices
    Salasnich, L
    Parola, A
    Reatto, L
    PHYSICAL REVIEW A, 1999, 59 (04): : 2990 - 2995
  • [22] Plasmonic toroidal excitation with engineering metamaterials
    Wu, Pin Chieh
    Hsiao, Hui-Hsin
    Liao, Chun Yen
    Chung, Tsung Lin
    Wu, Pei Ru
    Savinov, Vassili
    Zheludev, Nikolay I.
    Tsai, Din Ping
    PLASMONICS: DESIGN, MATERIALS, FABRICATION, CHARACTERIZATION, AND APPLICATIONS XV, 2017, 10346
  • [23] Formation of plasma and gaseous toroidal vortices in air
    U. Yusupaliev
    P. U. Yusupaliev
    S. A. Shuteev
    Plasma Physics Reports, 2007, 33 : 198 - 209
  • [24] Vortices for a Rotating Toroidal Bose–Einstein Condensate
    Stan Alama
    Lia Bronsard
    J. Alberto Montero
    Archive for Rational Mechanics and Analysis, 2008, 187 : 481 - 522
  • [25] Structured Optical Toroidal Vortices with Rotational Symmetry
    Zhong, Jinzhan
    Zhan, Qiwen
    PHOTONICS, 2025, 12 (03)
  • [26] Toroidal vortices as a solution to the dust migration problem
    Loren-Aguilar, Pablo
    Bate, Matthew R.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 457 (01) : L54 - L58
  • [27] Tunable plasmonic toroidal terahertz metamodulator
    Gerislioglu, Burak
    Ahmadivand, Arash
    Pala, Nezih
    PHYSICAL REVIEW B, 2018, 97 (16)
  • [28] Tailoring spatiotemporal dynamics of plasmonic vortices
    Yuan, Xinyao
    Xu, Quan
    Lang, Yuanhao
    Jiang, Xiaohan
    Xu, Yuehong
    Chen, Xieyu
    Han, Jie
    Zhang, Xueqian
    Han, Jiaguang
    Zhang, Weili
    OPTO-ELECTRONIC ADVANCES, 2023, 6 (04)
  • [29] Tailoring spatiotemporal dynamics of plasmonic vortices
    Xinyao Yuan
    Quan Xu
    Yuanhao Lang
    Xiaohan Jiang
    Yuehong Xu
    Xieyu Chen
    Jie Han
    Xueqian Zhang
    Jiaguang Han
    Weili Zhang
    Opto-Electronic Advances, 2023, 6 (04) : 18 - 29
  • [30] Plasmonic vortices host magnetoelectric interactions
    Ghosh, Atreyie
    Yang, Sena
    Dai, Yanan
    Liu, Vincent
    Petek, Hrvoje
    PHYSICAL REVIEW RESEARCH, 2024, 6 (01):