Source shape estimation for neutron imaging systems using convolutional neural networks

被引:0
|
作者
Saavedra, Gary [1 ]
Geppert-Kleinrath, Verena [1 ]
Danly, Chris [1 ]
Durocher, Mora [1 ]
Wilde, Carl [1 ]
Fatherley, Valerie [1 ]
Mendoza, Emily [1 ]
Tafoya, Landon [1 ]
Volegov, Petr [2 ]
Fittinghoff, David [2 ]
Rubery, Michael [2 ]
Freeman, Matthew S. [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87544 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2024年 / 95卷 / 08期
关键词
Computational geometry - Imaging systems - Maximum likelihood - Neutron detectors - Neutron radiography - Neutrons - Scintillation counters - Time difference of arrival;
D O I
10.1063/5.0214449
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Neutron imaging systems are important diagnostic tools for characterizing the physics of inertial confinement fusion reactions at the National Ignition Facility (NIF). In particular, neutron images give diagnostic information on the size, symmetry, and shape of the fusion hot spot and surrounding cold fuel. Images are formed via collection of neutron flux from the source using a system of aperture arrays and scintillator-based detectors. Currently, reconstruction of fusion source geometry from the collected neutron images is accomplished by solving a computationally intensive maximum likelihood estimation problem via expectation maximization. In contrast, it is often useful to have simple representations of the overall source geometry that can be computed quickly. In this work, we develop convolutional neural networks (CNNs) to reconstruct the outer contours of simple source geometries. We compare the performance of the CNN for penumbral and pinhole data and provide experimental demonstrations of our methods on both non-noisy and noisy data.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Harmonic Analysis in Power Systems using Convolutional Neural Networks
    Severoglu, Nagihan
    Salor, Ozgul
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [32] Order Determination of Linear Systems Using Convolutional Neural Networks
    Kalantari, S. H.
    Kalhor, A.
    Araabi, B. N.
    2022 8TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT'22), 2022, : 908 - 913
  • [33] Learning dynamical systems in noise using convolutional neural networks
    Mukhopadhyay, Sumona
    Banerjee, Santo
    CHAOS, 2020, 30 (10)
  • [34] Study on fingerprint authentication systems using convolutional neural networks
    Moga, Delia
    Filip, Ioan
    IEEE 15TH INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTATIONAL INTELLIGENCE AND INFORMATICS (SACI 2021), 2021, : 15 - 20
  • [35] Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
    Gheitasi A.
    Farsi H.
    Mohamadzadeh S.
    International Journal of Engineering, Transactions A: Basics, 2020, 33 (04): : 552 - 559
  • [36] An Improved Indoor Depth Estimation Method Using Convolutional Neural Networks
    Liang Y.
    Zhang J.
    Zhang W.
    Tianjin Daxue Xuebao (Ziran Kexue yu Gongcheng Jishu Ban)/Journal of Tianjin University Science and Technology, 2020, 53 (08): : 840 - 846
  • [37] Hand Bone Age Estimation Using Deep Convolutional Neural Networks
    Mame, Antoine Badi
    Tapamo, Jules R.
    ADVANCED DATA MINING AND APPLICATIONS, ADMA 2021, PT I, 2022, 13087 : 61 - 72
  • [38] On Generalizing Driver Gaze Zone Estimation using Convolutional Neural Networks
    Vora, Sourabh
    Rangesh, Akshay
    Trivedi, Mohan M.
    2017 28TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV 2017), 2017, : 849 - 854
  • [39] Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
    Gheitasi, A.
    Farsi, H.
    Mohamadzadeh, S.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2020, 33 (04): : 552 - 559
  • [40] Multi-Modal Depth Estimation Using Convolutional Neural Networks
    Siddiqui, Sadique Adnan
    Vierling, Axel
    Berns, Karsten
    2020 IEEE INTERNATIONAL SYMPOSIUM ON SAFETY, SECURITY, AND RESCUE ROBOTICS (SSRR 2020), 2020, : 354 - 359