Source shape estimation for neutron imaging systems using convolutional neural networks

被引:0
|
作者
Saavedra, Gary [1 ]
Geppert-Kleinrath, Verena [1 ]
Danly, Chris [1 ]
Durocher, Mora [1 ]
Wilde, Carl [1 ]
Fatherley, Valerie [1 ]
Mendoza, Emily [1 ]
Tafoya, Landon [1 ]
Volegov, Petr [2 ]
Fittinghoff, David [2 ]
Rubery, Michael [2 ]
Freeman, Matthew S. [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87544 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2024年 / 95卷 / 08期
关键词
Computational geometry - Imaging systems - Maximum likelihood - Neutron detectors - Neutron radiography - Neutrons - Scintillation counters - Time difference of arrival;
D O I
10.1063/5.0214449
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Neutron imaging systems are important diagnostic tools for characterizing the physics of inertial confinement fusion reactions at the National Ignition Facility (NIF). In particular, neutron images give diagnostic information on the size, symmetry, and shape of the fusion hot spot and surrounding cold fuel. Images are formed via collection of neutron flux from the source using a system of aperture arrays and scintillator-based detectors. Currently, reconstruction of fusion source geometry from the collected neutron images is accomplished by solving a computationally intensive maximum likelihood estimation problem via expectation maximization. In contrast, it is often useful to have simple representations of the overall source geometry that can be computed quickly. In this work, we develop convolutional neural networks (CNNs) to reconstruct the outer contours of simple source geometries. We compare the performance of the CNN for penumbral and pinhole data and provide experimental demonstrations of our methods on both non-noisy and noisy data.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Source localization for neutron imaging systems using convolutional neural networks
    Saavedra, Gary
    Geppert-Kleinrath, Verena
    Danly, Chris
    Durocher, Mora
    Wilde, Carl
    Fatherley, Valerie
    Mendoza, Emily
    Tafoya, Landon
    Volegov, Petr
    Fittinghoff, David
    Rubery, Michael
    Freeman, Matthew S.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (06):
  • [2] Gaze estimation using convolutional neural networks
    Karmi, Rawdha
    Rahmany, Ines
    Khlifa, Nawres
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (01) : 389 - 398
  • [3] Gaze estimation using convolutional neural networks
    Rawdha Karmi
    Ines Rahmany
    Nawres Khlifa
    Signal, Image and Video Processing, 2024, 18 : 389 - 398
  • [4] Source depth estimation with feature matching using convolutional neural networks in shallow water
    Liu, Mingda
    Niu, Haiqiang
    Li, Zhenglin
    Guo, Yonggang
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2024, 155 (02): : 1119 - 1134
  • [5] Deep Convolutional Neural Networks for Displacement Estimation in ARFI Imaging
    Chan, Derek Y.
    Morris, D. Cody
    Polascik, Thomas J.
    Palmeri, Mark L.
    Nightingale, Kathryn R.
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2021, 68 (07) : 2472 - 2481
  • [6] Vegetation Cover Estimation Using Convolutional Neural Networks
    Ghazal, Mohammed Asaad
    Mahmoud, Ali
    Aslantas, Ali
    Soliman, Ahmed
    Shalaby, Ahmed
    Benediktsson, Jon Atli
    El-Baz, Ayman
    IEEE ACCESS, 2019, 7 : 132563 - 132576
  • [7] Epicentral Region Estimation Using Convolutional Neural Networks
    Cruz, Leonel
    Tous, Ruben
    Otero, Beatriz
    Alvarado, Leonardo
    Mus, Sergi
    Rojas, Otilio
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE (LOD 2021), PT I, 2022, 13163 : 541 - 552
  • [8] Driver pose estimation using convolutional neural networks
    Chen, Ren-Wen
    Yuan, Ting-Ting
    Huang, Wen-Bin
    Zhang, Yu-Xiang
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2021, 29 (04): : 813 - 821
  • [9] Human Pose Estimation Using Convolutional Neural Networks
    Singh, Anubhav
    Agarwal, Shruti
    Nagrath, Preeti
    Saxena, Anmol
    Thakur, Narina
    PROCEEDINGS 2019 AMITY INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AICAI), 2019, : 946 - 952
  • [10] Microwave Imaging Using Cascaded Convolutional Neural Networks
    Xue, Fei
    Guo, Lei
    Abbosh, Amin
    2023 5TH AUSTRALIAN MICROWAVE SYMPOSIUM, AMS, 2023, : 47 - 48