Anisotropic and high-temperature deformation behavior of additively manufactured AlSi10Mg: Experiments and microscale modeling

被引:4
|
作者
Dai, Shi [1 ,2 ,4 ]
Hu, Daijun [2 ]
Grilli, Nicolo [3 ]
Zou, Shaohua [4 ]
Deng, Zichen [4 ]
Yan, Wentao [2 ,5 ]
机构
[1] Beijing Inst Technol, Inst Adv Struct Technol, Beijing 100081, Peoples R China
[2] Natl Univ Singapore, Dept Mech Engn, Singapore 117575, Singapore
[3] Univ Bristol, Sch Elect Elect & Mech Engn, Bristol BS8 1TR, England
[4] Northwestern Polytech Univ, Dept Engn Mech, MIIT Key Lab Dynam & Control Complex Syst, Xian 710072, Shaanxi, Peoples R China
[5] NUS Suzhou Res Inst, Suzhou 215123, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Additive manufacturing; Temperature dependence; AlSi10Mg; Crystal plasticity; Dislocation; Anisotropy; STRAIN-RATE SENSITIVITY; CRYSTAL PLASTICITY; MECHANICAL-PROPERTIES; CONSTITUTIVE MODEL; MICROSTRUCTURE; ALUMINUM; ALLOY; TENSILE; SLIP; POLYCRYSTALS;
D O I
10.1016/j.addma.2024.104285
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Metal additive manufacturing (AM) has gained considerable interest in various industries in recent years. Understanding the deformation behavior of additively manufactured metallic components and its underlying mechanisms is important to push the boundaries of applications. In this work, the mechanical behaviors of AlSi10Mg produced by laser powder bed fusion are investigated at different temperatures and strain rates by both experiments and modeling. A dislocation-based crystal plasticity finite element model is utilized to delve into the intrinsic deformation mechanisms, such as dislocation multiplication, annihilation and strain rate sensitivity, which is validated by comparing the deformation behavior and dislocation evolution with those in experiments. The model combined with experiments is used to understand the temperature dependence of the strain rate sensitivity, critical resolved shear stress and dislocation annihilation distance. We further investigate the strain distributions at different temperatures and strain rates, revealing the effect of grain orientation and size on deformation behavior. Additionally, the anisotropic behavior of additively manufactured AlSi10Mg parts built in different directions is studied. The results show that grains with <100> direction parallel to the load direction have large plastic deformation, while the stress concentrates in the grains near <110> direction. These insights are crucial for understanding the deformation mechanisms of AMed AlSi10Mg, thereby potentially advancing the design and application of AM components in extreme conditions.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] The effect of extrusion and aging on the mechanical properties of additively manufactured AlSi10Mg
    Ben-Artzy, A.
    Hadad, G.
    Bussiba, A.
    Nahmany, M.
    PROGRESS IN ADDITIVE MANUFACTURING, 2022, 7 (02) : 201 - 212
  • [42] Understanding fatigue crack propagation pathways in Additively Manufactured AlSi10Mg
    Rangaraj, S.
    Ahmed, S. S., I
    Davis, A.
    Withers, P. J.
    Gholinia, A.
    44TH RISO INTERNATIONAL SYMPOSIUM ON MATERIALS SCIENCE, RISO 2024, 2024, 1310
  • [43] Electrical resistivity of additively manufactured AlSi10Mg for use in electric motors
    Silbernagel, Cassidy
    Ashcroft, Ian
    Dickens, Phill
    Galea, Michael
    ADDITIVE MANUFACTURING, 2018, 21 : 395 - 403
  • [44] On the Zr Electrochemical Conversion of Additively Manufactured AlSi10Mg: The Role of the Microstructure
    Revilla, Reynier, I
    Rybin, Clara A.
    De Graeve, Iris
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (12)
  • [45] Metallurgical investigations of laser remelted additively manufactured AlSi10Mg parts
    Schanz, J.
    Hofele, M.
    Ruck, S.
    Schubert, T.
    Hitzler, L.
    Schneider, G.
    Merkel, M.
    Riegel, H.
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2017, 48 (05) : 463 - 476
  • [46] The effect of texture on the anisotropy of thermophysical properties of additively manufactured AlSi10Mg
    Strumza, Einat
    Yeheskel, Ori
    Hayun, Shmuel
    ADDITIVE MANUFACTURING, 2019, 29
  • [47] The effect of extrusion and aging on the mechanical properties of additively manufactured AlSi10Mg
    A. Ben-Artzy
    G. Hadad
    A. Bussiba
    M. Nahmany
    Progress in Additive Manufacturing, 2022, 7 : 201 - 212
  • [48] Crystal plasticity simulation of the macroscale and microscale stress-strain relations of additively manufactured AlSi10Mg alloy
    Zhang, X. X.
    Andrae, H.
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 200
  • [49] Effects of process parameters on strengthening mechanisms of additively manufactured AlSi10Mg
    Gokdag, Istemihan
    Acar, Erdem
    MATERIALS TESTING, 2023, 65 (03) : 409 - 422
  • [50] The competing role of defects and surface roughness on the fatigue behavior of additively manufactured AlSi10Mg alloy
    Muhammad, Waqas
    Kang, Jidong
    Inal, Kaan
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 177