Stable stripe and vortex solitons in two-dimensional spin-orbit coupled Bose-Einstein condensates

被引:0
|
作者
Guo, Yuan [1 ,2 ]
Idrees, Muhammad [1 ,2 ,3 ,4 ]
Lin, Ji [1 ,2 ]
Li, Hui-jun [1 ,2 ,3 ,4 ]
机构
[1] Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China
[2] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China
[3] Zhejiang Normal Univ, Zhejiang Inst Photoelect, Jinhua 321004, Peoples R China
[4] Zhejiang Normal Univ, Zhejiang Inst Adv Light Source, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金;
关键词
Bose-Einstein condensate; spin-orbit coupling; rotation frequency; stripe solitons; vortex array; BREAKING; SYMMETRIES; PHASE;
D O I
10.1088/1572-9494/ad3e66
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a flexible manipulation and control of solitons via Bose-Einstein condensates. In the presence of Rashba spin-orbit coupling and repulsive interactions within a harmonic potential, our investigation reveals the numerical local solutions within the system. By manipulating the strength of repulsive interactions and adjusting spin-orbit coupling while maintaining a zero-frequency rotation, diverse soliton structures emerge within the system. These include plane-wave solitons, two distinct types of stripe solitons, and odd petal solitons with both single and double layers. The stability of these solitons is intricately dependent on the varying strength of spin-orbit coupling. Specifically, stripe solitons can maintain a stable existence within regions characterized by enhanced spin-orbit coupling while petal solitons are unable to sustain a stable existence under similar conditions. When rotational frequency is introduced to the system, solitons undergo a transition from stripe solitons to a vortex array characterized by a sustained rotation. The rotational directions of clockwise and counterclockwise are non-equivalent owing to spin-orbit coupling. As a result, the properties of vortex solitons exhibit significant variation and are capable of maintaining a stable existence in the presence of repulsive interactions.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Emergence of a Spin Microemulsion in Spin-Orbit Coupled Bose-Einstein Condensates
    Mcgarrigle E.C.
    Delaney K.T.
    Balents L.
    Fredrickson G.H.
    Physical Review Letters, 2023, 131 (17)
  • [32] Bright solitons in spin-orbit-coupled Bose-Einstein condensates
    Xu, Yong
    Zhang, Yongping
    Wu, Biao
    PHYSICAL REVIEW A, 2013, 87 (01):
  • [33] Vortex gap solitons in spin-orbit-coupled Bose-Einstein condensates with competing nonlinearities
    Xu, Xiaoxi
    Zhao, Feiyan
    Zhou, Yangui
    Liu, Bin
    Jiang, Xunda
    Malomed, Boris A.
    Li, Yongyao
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 117
  • [34] One- and two-dimensional solitons in spin-orbit-coupled Bose-Einstein condensates with fractional kinetic energy
    Sakaguchi, Hidetsugu
    Malomed, Boris A.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2022, 55 (15)
  • [35] Multi-Type Solitons in Spin-Orbit Coupled Spin-1 Bose-Einstein Condensates
    He, Jun-Tao
    Fang, Ping-Ping
    Lin, Ji
    CHINESE PHYSICS LETTERS, 2022, 39 (02)
  • [36] Bose-Einstein Condensates with Spin-Orbit Interaction
    Ho, Tin-Lun
    Zhang, Shizhong
    PHYSICAL REVIEW LETTERS, 2011, 107 (15)
  • [37] Vortex dynamics in spin-orbit-coupled Bose-Einstein condensates
    Fetter, Alexander L.
    PHYSICAL REVIEW A, 2014, 89 (02):
  • [38] Motion of solitons in one-dimensional spin-orbit-coupled Bose-Einstein condensates
    Wen, Lin
    Sun, Q.
    Chen, Yu
    Wang, Deng-Shan
    Hu, J.
    Chen, H.
    Liu, W. -M.
    Juzeliunas, G.
    Malomed, Boris A.
    Ji, An-Chun
    PHYSICAL REVIEW A, 2016, 94 (06)
  • [39] Tunneling dynamics of tunable spin-orbit coupled Bose-Einstein condensates
    Ma Yun-E
    Qiao Xin
    Gao Rui
    Liang Jun-Cheng
    Zhang Ai-Xia
    Xue Ju-Kui
    ACTA PHYSICA SINICA, 2022, 71 (21)
  • [40] Tunneling dynamics of tunable spin-orbit coupled Bose-Einstein condensates
    Ma, Yun-E
    Qiao, Xin
    Gao, Rui
    Liang, Jun-Cheng
    Zhang, Ai-Xia
    Xue, Ju-Kui
    Wuli Xuebao/Acta Physica Sinica, 2022, 71 (21):