Mechanism of surface oxygen-containing species promoted electrocatalytic CO2 reduction

被引:2
|
作者
Fu, Zhanzhao [1 ]
Ouyang, Yixin [1 ]
Wu, Mingliang [1 ]
Ling, Chongyi [1 ]
Wang, Jinlan [1 ]
机构
[1] Southeast Univ, Sch Phys, Key Lab Quantum Mat & Devices, Minist Educ, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; reduction; First-principles calculations; Oxygen-containing species; Reaction mechanism; GENERALIZED GRADIENT APPROXIMATION; SINGLE-ATOM CATALYSTS; ALKALI-METAL CATIONS; ELECTROCHEMICAL REDUCTION; PRODUCT SELECTIVITY; CU; ELECTROREDUCTION; DESIGN; ENERGY;
D O I
10.1016/j.scib.2024.03.012
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Oxygen-containing species have been demonstrated to play a key role in facilitating electrocatalytic CO2 reduction (CO2RR), particularly in enhancing the selectivity towards multi-carbon (C2+) products. However, the underlying promotion mechanism is still under debate, which greatly limits the rational optimization of the catalytic performance of CO2RR. Herein, taking CO2 and O2 co-electrolysis over Cu as the prototype, we successfully clarified how O2 boosts CO2RR from a new perspective by employing comprehensive theoretical simulations. Our results demonstrated that O2 in feed gas can be rapidly reduced into *OH, leading to the partial oxidation of Cu surface under reduction conditions. Surface *OH accelerates the formation of quasi-specifically adsorbed K+ due to the electrostatic interaction between *OH and K+ ions, which significantly increases the concentration of K+ near the Cu surface. These quasi-specifically adsorbed K+ ions can not only lower the C-C coupling barriers but also promote the hydrogenation of CO2 to improve the CO yield rate, which are responsible for the remarkably enhanced efficiency of C2+ products. During the whole process, O2 co-electrolysis plays an indispensable role in stabilizing surface *OH. This mechanism can be also adopted to understand the effect of high pH of electrolyte and residual O in oxide-derived Cu (OD-Cu) on the catalytic efficiency towards C2+ products. Therefore, our work provides new insights into strategies for improving C2+ products on the Cu-based catalysts, i.e., maintaining partial oxidation of surface under reduction conditions. (c) 2024 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
引用
收藏
页码:1410 / 1417
页数:8
相关论文
共 50 条
  • [41] Sprayed Ag oxygen reduction reaction gas-diffusion electrodes for the electrocatalytic reduction of CO2 to CO
    Wilde P.
    Özden A.
    Winter H.
    Quast T.
    Weidner J.
    Dieckhöfer S.
    Junqueira J.R.C.
    Metzner M.
    Peter W.
    Leske W.
    Öhl D.
    Bobrowski T.
    Turek T.
    Schuhmann W.
    Applied Research, 2023, 2 (02):
  • [42] Electrocatalytic CO2 reduction promoted by catalyst-bound proton-abstracting ligands
    Zhou, Nana
    Yin, Yurong
    Luo, Baojuan
    Fu, Yongxin
    Ma, Xiaoxun
    Dai, Chengyi
    Chemical Engineering Journal, 2025, 509
  • [43] A perspective on mechanism of high-current-density electrocatalytic CO2 reduction
    Chen, Yumo
    Hu, Shuqi
    Kang, Xin
    Liu, Bilu
    MRS ENERGY & SUSTAINABILITY, 2025, 12 (01) : 121 - 130
  • [44] Operando Spectroelectrochemistry Unravels the Mechanism of CO2 Electrocatalytic Reduction by an Fe Porphyrin
    Salame, Aude
    Cheah, Mun Hon
    Bonin, Julien
    Robert, Marc
    Anxolabehere-Mallart, Elodie
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (51)
  • [45] Bimetallic chalcogenides for electrocatalytic CO2 reduction
    Qian Li
    Yu-Chao Wang
    Jian Zeng
    Xin Zhao
    Chen Chen
    Qiu-Mei Wu
    Li-Miao Chen
    Zhi-Yan Chen
    Yong-Peng Lei
    RareMetals, 2021, 40 (12) : 3442 - 3453
  • [46] ELECTROCATALYTIC REDUCTION OF CO2 BY ASSOCIATIVE ACTIVATION
    BRUCE, MRM
    MEGEHEE, E
    SULLIVAN, BP
    THORP, H
    OTOOLE, TR
    DOWNARD, A
    MEYER, TJ
    ORGANOMETALLICS, 1988, 7 (01) : 238 - 240
  • [47] Defective graphene for electrocatalytic CO2 reduction
    Han, Peng
    Yu, Xiaomin
    Yuan, Di
    Kuang, Min
    Wang, Yifei
    Al-Enizi, Abdullah M.
    Zheng, Gengfeng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2019, 534 : 332 - 337
  • [48] CO2 reduction: the quest for electrocatalytic materials
    Khezri, Bahareh
    Fisher, Adrian C.
    Pumera, Martin
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (18) : 8230 - 8246
  • [49] Electrocatalytic CO2 reduction in acidic medium
    Hao, Qi
    Liu, Dong-Xue
    Zhong, Hai-Xia
    Tang, Qi
    Yan, Jun-Min
    CHEM CATALYSIS, 2023, 3 (03):
  • [50] Electrocatalytic reduction of low concentration CO2
    Kumagai, Hiromu
    Nishikawa, Tetsuya
    Koizumi, Hiroki
    Yatsu, Taiki
    Sahara, Go
    Yamazaki, Yasuomi
    Tamaki, Yusuke
    Ishitani, Osamu
    CHEMICAL SCIENCE, 2019, 10 (06) : 1597 - 1606