ROBUST ESTIMATION OF COVARIANCE MATRICES: ADVERSARIAL CONTAMINATION AND BEYOND

被引:0
|
作者
Minsker, Stanislav [1 ]
Wang, Lang [1 ]
机构
[1] Univ Southern Calif, Dept Math, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
Adversarial contamination; covariance estimation; heavy tailed distribution; low-rank recovery; U-statistics; HIGH-DIMENSIONAL COVARIANCE; OPTIMAL RATES; ASYMPTOTICS; LOCATION;
D O I
10.5705/ss.202021.0388
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of estimating the covariance structure of a random vector Y is an element of Rd from an independent and identically distributed (i.i.d.) sample Y1,. . . , Yn. We are interested in the situation in which d is large relative to n, but the covariance matrix Sigma of interest has (exactly or approximately) low rank. We assume that the given sample is either (a) epsilon-adversarially corrupted, meaning that an epsilon-fraction of the observations can be replaced by arbitrary vectors, or (b) i.i.d., but the underlying distribution is heavy-tailed, meaning that the norm of Y possesses only finite fourth moments. We propose estimators that are adaptive to the potential low-rank structure of the covariance matrix and to the proportion of contaminated data, and that admit tight deviation guarantees, despite rather weak underlying assumptions. Finally, we show that the proposed construction leads to numerically efficient algorithms that require minimal tuning from the user, and demonstrate the performance of such methods under various models of contamination.
引用
收藏
页码:1565 / 1583
页数:19
相关论文
共 50 条
  • [1] ROBUST ESTIMATION OF COVARIANCE MATRICES
    REYNOLDS, RG
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (09) : 1047 - 1051
  • [2] ROBUST ESTIMATION OF STRUCTURED COVARIANCE MATRICES
    WILLIAMS, DB
    JOHNSON, DH
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (09) : 2891 - 2906
  • [3] Robust estimation of constrained covariance matrices for confirmatory factor analysis
    Lozeron, E. Dupuis
    Victoria-Feser, M. P.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (12) : 3020 - 3032
  • [4] Robust estimation of high-dimensional covariance and precision matrices
    Avella-Medina, Marco
    Battey, Heather S.
    Fan, Jianqing
    Li, Quefeng
    [J]. BIOMETRIKA, 2018, 105 (02) : 271 - 284
  • [5] Robust estimation of precision matrices under cellwise contamination
    Tarr, G.
    Mueller, S.
    Weber, N. C.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 93 : 404 - 420
  • [6] Robust Shrinkage Estimation of High-Dimensional Covariance Matrices
    Chen, Yilun
    Wiesel, Ami
    Hero, Alfred O., III
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (09) : 4097 - 4107
  • [7] ESTIMATION OF COVARIANCE MATRICES
    KOSHEVOY, VM
    [J]. RADIOTEKHNIKA I ELEKTRONIKA, 1986, 31 (10): : 1964 - 1974
  • [8] Robust covariance estimation with missing values and cell-wise contamination
    Lounici, Karim
    Pacreau, Gregoire
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [9] An M-Estimator for Robust Centroid Estimation on the Manifold of Covariance Matrices
    Ilea, Ioana
    Bombrun, Lionel
    Terebes, Romulus
    Borda, Monica
    Germain, Christian
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (09) : 1255 - 1259
  • [10] On the estimation of structured covariance matrices
    Zorzi, Mattia
    Ferrante, Augusto
    [J]. AUTOMATICA, 2012, 48 (09) : 2145 - 2151