Magnetoelectric Dipole Antenna Framework Supporting Orbital Angular Momentum Modes

被引:0
|
作者
Jofre, Marc [1 ]
Akazzim, Youness [2 ]
Blanch, Sebastian [2 ]
Romeu, Jordi [2 ]
Cetiner, Bedri A. [3 ,4 ]
Jofre-Roca, Luis [2 ]
机构
[1] Univ Politecn Catalunya BarcelonaTech UPC, Dept Network Engn, Barcelona 08860, Spain
[2] Univ Politecn Catalunya BarcelonaTech UPC, Dept Signal Theory & Commun, Barcelona 08034, Spain
[3] Utah State Univ, Dept Elect & Comp Engn, Logan, UT 84322 USA
[4] i5 Technol Inc, North Logan, UT 84341 USA
关键词
Antenna; cognitive systems; magnetoelectric; microwaves; orbital angular momentum (OAM); radiation; spherical vector harmonics; vehicular communications; VORTEX ELECTROMAGNETIC-WAVES; RECONFIGURABLE ANTENNA; GENERATION; FREQUENCY;
D O I
10.1109/TAP.2024.3363448
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The ability to use resources to meet the need of growing diversity of communication services and user behavior marks the future of cognitive wireless communication systems. Cognitive wireless technologies for vehicular communications in combination with orbital angular momentum (OAM) modes aim at extending non-line-of-sight (NLOS) short-distance communications for smart mobility. In this regard, OAM antenna frameworks need to be developed to support these technologies. In this work, we describe a magnetoelectric dipole antenna framework supporting OAM modes. The framework is derived from moment tensors of specific vector spherical harmonic (VSH) functions synthesized from dipoles. The antenna framework is discussed in terms of OAM generation, and it is validated numerically and experimentally for l = 1 OAM mode, achieving more than 500-MHz operation bandwidth at the frequency of operation of 3.5 GHz. In addition, for l = 1 OAM mode, the null aligns precisely with the anticipated dimensions numerically computed.
引用
收藏
页码:3064 / 3072
页数:9
相关论文
共 50 条
  • [21] Orbital angular momentum of general astigmatic modes
    Visser, J
    Nienhuis, G
    [J]. PHYSICAL REVIEW A, 2004, 70 (01): : 013809 - 1
  • [22] Accelerated rotation with orbital angular momentum modes
    Schulze, Christian
    Roux, Filippus S.
    Dudley, Angela
    Rop, Ronald
    Duparre, Michael
    Forbes, Andrew
    [J]. PHYSICAL REVIEW A, 2015, 91 (04)
  • [23] Cyclic transformation of orbital angular momentum modes
    Schlederer, Florian
    Krenn, Mario
    Fickler, Robert
    Malik, Mehul
    Zeilinger, Anton
    [J]. NEW JOURNAL OF PHYSICS, 2016, 18
  • [24] A Circularly Polarized Multimode Patch Antenna for the Generation of Multiple Orbital Angular Momentum Modes
    Zhang, Zongtang
    Xiao, Shaoqiu
    Li, Yan
    Wang, Bing-Zhong
    [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2017, 16 : 521 - 524
  • [25] Orbital angular momentum due to modes interference
    Rondon Ojeda, Irving
    Soto-Eguibar, Francisco
    [J]. OPTICA APPLICATA, 2021, 51 (01) : 59 - 74
  • [26] Rotman Lens-Fed Antenna for Generating Multiple Orbital Angular Momentum Modes
    Zhang, Zhi-Ya
    Yu, Bin
    Wu, Dan
    Mao, Yongyan
    Zhang, Chengbin
    [J]. 2020 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE WORKSHOPS (WCNCW), 2020,
  • [27] Ring-core fiber with negative curvature structure supporting orbital angular momentum modes
    Tu, Jiajing
    Liu, Zhengyong
    Gao, Shecheng
    Wang, Zhuo
    Zhang, Jianbo
    Zhang, Bin
    Li, Jianping
    Liu, Weiping
    Tam, Hwayaw
    Li, Zhaohui
    Yu, Changyuan
    Lu, Chao
    [J]. OPTICS EXPRESS, 2019, 27 (15): : 20358 - 20372
  • [28] An Anti-Resonance Fiber Supporting Stable Transmission of 130 Orbital Angular Momentum Modes
    Wang Zhen
    Wang Jingli
    [J]. ACTA OPTICA SINICA, 2023, 43 (23)
  • [29] Flat and Low Dispersion Microstructured Optical Fiber for Supporting 22 Orbital Angular Momentum Modes
    You Yong
    Huang Wei
    Chen Shengyong
    Song Binbin
    [J]. ACTA OPTICA SINICA, 2018, 38 (04)
  • [30] Implementing orbital angular momentum modes using single-fed rectangular patch antenna
    Li, Qiuhao
    Li, Weiwen
    Zhu, Jianbin
    Zhang, Lei
    Liu, Yongcong
    [J]. INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2020, 30 (05)