Selenomethionine preconditioned mesenchymal stem cells derived extracellular vesicles exert enhanced therapeutic efficacy in intervertebral disc degeneration

被引:1
|
作者
Ma, Shengli [1 ]
Xue, Rui [2 ]
Zhu, Haiyang [1 ]
Han, Yu [3 ]
Ji, Xiang [3 ]
Zhang, Chaoyang [1 ]
Wei, Na [4 ]
Xu, Jingjing [4 ]
Li, Feng [3 ]
机构
[1] Zhengzhou Univ, Dept Emergency, Affiliated Hosp 1, Zhengzhou 450052, Henan, Peoples R China
[2] Zhengzhou Univ, Med Res Ctr, Affiliated Hosp 1, Zhengzhou 450052, Henan, Peoples R China
[3] Zhengzhou Univ, Dept Orthoped, Affiliated Hosp 1, Zhengzhou 450052, Henan, Peoples R China
[4] Zhengzhou Univ, Dept Pathol, Affiliated Hosp 1, Zhengzhou 450052, Peoples R China
基金
中国国家自然科学基金;
关键词
Selenomethionine; Autophagy; Extracellular vesicles; Intervertebral disc degeneration; Mesenchymal stromal cells; SENESCENCE; HYDROGELS; DISEASE;
D O I
10.1016/j.intimp.2024.112028
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Extracellular vesicles (EVs) derived from Mesenchymal Stromal Cells (MSCs) have shown promising therapeutic potential for multiple diseases, including intervertebral disc degeneration (IDD). Nevertheless, the limited production and unstable quality of EVs hindered the clinical application of EVs in IDD. Selenomethionine (Se -Met), the major form of organic selenium present in the cereal diet, showed various beneficial effects, including antioxidant, immunomodulatory and anti-apoptotic effects. In the current study, Se -Met was employed to treat MSCs to investigate whether Se -Met can facilitate the secretion of EVs by MSCs and optimize their therapeutic effects on IDD. On the one hand, Se -Met promoted the production of EVs by enhancing the autophagy activity of MSCs. On the other hand, Se -Met pretreated MSC -derived EVs (Se-EVs) exhibited an enhanced protective effects on alleviating nucleus pulposus cells (NPCs) senescence and attenuating IDD compared with EVs isolated from control MSCs (C-EVs) in vitro and in vivo . Moreover, we performed a miRNA microarray sequencing analysis on EVs to explore the potential mechanism of the protective effects of EVs. The result indicated that miR-125a-5p is markedly enriched in Se-EVs compared to C-EVs. Further in vitro and in vivo experiments revealed that knockdown of miR-125a-5p in Se-EVs (miR KD -Se-EVs) impeded the protective effects of Se-EVs, while overexpression of miR-125a-5p (miR OE -Se-EVs) boosted the protective effects. In conclusion, Se -Met facilitated the MSC -derived EVs production and increased miR-125a-5p delivery in Se-EVs, thereby improving the protective effects of MSCderived EVs on alleviating NPCs senescence and attenuating IDD.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Platelet-derived extracellular vesicles ameliorate intervertebral disc degeneration by alleviating mitochondrial dysfunction
    Dai, Zhanqiu
    Xia, Chen
    Zhao, Tingxiao
    Wang, Haoli
    Tian, Hongsen
    Xu, Ouyuan
    Zhu, Xunbin
    Zhang, Jun
    Chen, Pengfei
    MATERIALS TODAY BIO, 2023, 18
  • [32] Mesenchymal Stem Cells Induced by Microencapsulated Chondrocytes on Repairing of Intervertebral Disc Degeneration
    Zhang, Zi-qi
    Wang, Chun-sheng
    Yang, Pei
    Wang, Kun-zheng
    ORTHOPAEDIC SURGERY, 2018, 10 (04) : 328 - 336
  • [33] Innovative preconditioning strategies for improving the therapeutic efficacy of extracellular vesicles derived from mesenchymal stem cells in gastrointestinal diseases
    Didamoony, Manar A.
    Soubh, Ayman A.
    Atwa, Ahmed M.
    Ahmed, Lamiaa A.
    INFLAMMOPHARMACOLOGY, 2023, 31 (06) : 2973 - 2993
  • [34] Innovative preconditioning strategies for improving the therapeutic efficacy of extracellular vesicles derived from mesenchymal stem cells in gastrointestinal diseases
    Manar A. Didamoony
    Ayman A. Soubh
    Ahmed M. Atwa
    Lamiaa A. Ahmed
    Inflammopharmacology, 2023, 31 : 2973 - 2993
  • [35] Embryonic stem cell-derived extracellular vesicles enhance the therapeutic effect of mesenchymal stem cells
    Zhang, Yan
    Xu, Jia
    Liu, Siying
    Lim, Meikuang
    Zhao, Shuang
    Zhang, Kaiyue
    Wang, Lingling
    Ji, Qian
    Han, Zhongchao
    Kong, Deling
    Li, Zongjin
    Liu, Na
    Cui, kaige
    THERANOSTICS, 2019, 9 (23): : 6976 - 6990
  • [36] The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles
    Katsuda, Takeshi
    Kosaka, Nobuyoshi
    Takeshita, Fumitaka
    Ochiya, Takahiro
    PROTEOMICS, 2013, 13 (10-11) : 1637 - 1653
  • [37] Mesenchymal Stem Cell-Derived Extracellular Vesicles and Their Therapeutic Potential
    Zhao, Ashley G.
    Shah, Kiran
    Cromer, Brett
    Sumer, Huseyin
    STEM CELLS INTERNATIONAL, 2020, 2020
  • [38] Therapeutic potentials of mesenchymal stem cell-derived extracellular vesicles
    Giebel, B.
    ACTA PHYSIOLOGICA, 2015, 213 : 20 - 21
  • [39] Single-Cell Microgel Encapsulation Improves the Therapeutic Efficacy of Mesenchymal Stem Cells in Treating Intervertebral Disc Degeneration via Inhibiting Pyroptosis
    Huang, Guanrui
    Shen, Haotian
    Xu, Kaiwang
    Shen, Yifan
    Jin, Jiale
    Chu, Guangyu
    Xing, Hongyuan
    Feng, Zhiyun
    Wang, Yue
    Jin, Jin
    RESEARCH, 2024, 7
  • [40] Cardiac cells and mesenchymal stem cells derived extracellular vesicles: a potential therapeutic strategy for myocardial infarction
    Qin, Dan
    Wang, Xiaobo
    Pu, Jun
    Hu, Houxiang
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2024, 11