A NOVEL GAN-BASED DATA AUGMENTATION ALGORITHM FOR SEMICONDUCTOR DEFECT INSPECTION

被引:0
|
作者
Liu, Yang [1 ]
Guan, Yuanjun [1 ]
Han, Tianyan [2 ]
Ma, Can [1 ]
Wang, Jiayi [1 ]
Wang, Tao [1 ]
Yi, Qianchuan [1 ]
Hu, Lilei [1 ,2 ]
机构
[1] Shanghai Univ, Sch Microelect, Shanghai 200444, Peoples R China
[2] Shanghai Ind Technol Res Inst, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Generative Adversarial Networks; semiconductor defect inspection; residual networks;
D O I
10.1109/CSTIC61820.2024.10531884
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A deep learning solution is proposed for the problem of object inspection in semiconductor images. Supervised learning method approaches require large annotated semiconductor datasets, which are often difficult to obtain. Therefore, we develop a new deep convolutional generative adversarial network (DCGAN)) to generate simulated data. Real image data and generated image data are used to train the residual network (ResNet) defect inspection network. Compared to training with the original dataset, using the synthetic dataset resulted in a 3.12% improvement in the accuracy of local defect detection. The total defect inspection accuracy also improves from 93.75% to 95.31%.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] GAN-Based Data Augmentation for Prediction Improvement Using Gene Expression Data in Cancer
    Moreno-Barea, Francisco J.
    Jerez, Jose M.
    Franco, Leonardo
    COMPUTATIONAL SCIENCE - ICCS 2022, PT III, 2022, 13352 : 28 - 42
  • [22] GAN-Based Data Augmentation Strategy for Sensor Anomaly Detection in Industrial Robots
    Lu, Haodong
    Du, Miao
    Qian, Kai
    He, Xiaoming
    Wang, Kun
    IEEE SENSORS JOURNAL, 2022, 22 (18) : 17464 - 17474
  • [23] Improving fNIRS-BCI accuracy using GAN-based data augmentation
    Nagasawa, Tomoyuki
    Sato, Takanori
    Nambu, Isao
    Wada, Yasuhiro
    2019 9TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2019, : 1208 - 1211
  • [24] Gan-based data augmentation to improve breast ultrasound and mammography mass classification
    Jimenez-Gaona, Yuliana
    Carrion-Figueroa, Diana
    Lakshminarayanan, Vasudevan
    Rodriguez-Alvarez, Maria Jose
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 94
  • [25] Optimized automated cardiac MR scar quantification with GAN-based data augmentation
    Lustermans, Didier R. P. R. M.
    Amirrajab, Sina
    Veta, Mitko
    Breeuwer, Marcel
    Scannell, Cian M.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 226
  • [26] GAN-based statistical modeling with adaptive schemes for surface defect inspection of IC metal packages
    Wu, Zhenshuang
    Cai, Nian
    Chen, Kaiqiong
    Xia, Hao
    Zhou, Shuai
    Wang, Han
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024, 35 (04) : 1811 - 1824
  • [27] Semi-GAN: An Improved GAN-Based Missing Data Imputation Method for the Semiconductor Industry
    Lee, Sun-Yong
    Connerton, Timothy Paul
    Lee, Yeon-Woo
    Kim, Daeyoung
    Kim, Donghwan
    Kim, Jin-Ho
    IEEE ACCESS, 2022, 10 : 72328 - 72338
  • [28] Semi-GAN: An Improved GAN-Based Missing Data Imputation Method for the Semiconductor Industry
    Lee, Sun-Yong
    Connerton, Timothy Paul
    Lee, Yeon-Woo
    Kim, Daeyoung
    Kim, Donghwan
    Kim, Jin-Ho
    IEEE Access, 2022, 10 : 72328 - 72338
  • [29] GAN-based statistical modeling with adaptive schemes for surface defect inspection of IC metal packages
    Zhenshuang Wu
    Nian Cai
    Kaiqiong Chen
    Hao Xia
    Shuai Zhou
    Han Wang
    Journal of Intelligent Manufacturing, 2024, 35 : 1811 - 1824
  • [30] Enhancing Data Discretization for Smoother Drone Input Using GAN-Based IMU Data Augmentation
    Petrenko, Dmytro
    Kryvenchuk, Yurii
    Yakovyna, Vitaliy
    DRONES, 2023, 7 (07)