A Spatio-Temporal Tree and Gauss Convolutional Network for Traffic Flow Forecasting

被引:0
|
作者
Ma, Zhaobin [1 ]
Lv, Zhiqiang [1 ]
Li, Jianbo [1 ]
Xia, Fengqian [1 ]
机构
[1] Qingdao Univ, Coll Comp Sci & Technol, Qingdao 266071, Peoples R China
关键词
Traffic flow forecast; Spatio-temporal features; Tree structure; Spatio-temporal forecasting; PREDICTION;
D O I
10.1109/MSN60784.2023.00105
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traffic flow forecasting plays a crucial role in Intelligent Transportation Systems (ITS) for the development and operation of modern transportation networks. Current methods primarily rely on Graph Convolutional Neural Networks (GNN) and Recurrent Neural Networks (RNN) to predict traffic flow. However, these methods face challenges in effectively capturing hierarchical and directional information within the traffic network while quantitatively balancing the relationships between current, previous, and future time data. To address these issues, this paper introduces a novel approach called Spatio-Temporal Tree and Gauss Convolutional Network (ST-TGCN) for traffic flow forecasting. The model utilizes a tree structure to construct a planar tree matrix for extracting spatial features and employs gaussian temporal convolution to extract temporal features of traffic flow. Experimental results demonstrate that ST-TGCN outperforms baseline methods, indicating its superior predictive capabilities.
引用
收藏
页码:722 / 729
页数:8
相关论文
共 50 条
  • [31] Fine-Grained Vessel Traffic Flow Prediction With a Spatio-Temporal Multigraph Convolutional Network
    Liang, Maohan
    Liu, Ryan Wen
    Zhan, Yang
    Li, Huanhuan
    Zhu, Fenghua
    Wang, Fei-Yue
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 23694 - 23707
  • [32] Deep spatio-temporal graph convolutional network for traffic accident prediction
    Yu, Le
    Du, Bowen
    Hu, Xiao
    Sun, Leilei
    Han, Liangzhe
    Lv, Weifeng
    NEUROCOMPUTING, 2021, 423 (423) : 135 - 147
  • [33] Spatio-Temporal Graph Convolutional Network for Stochastic Traffic Speed Imputation
    Cuza, Carlos Enrique Muniz
    Ho, Nguyen
    Zacharatou, Eleni Tzirita
    Pedersen, Torben Bach
    Yang, Bin
    30TH ACM SIGSPATIAL INTERNATIONAL CONFERENCE ON ADVANCES IN GEOGRAPHIC INFORMATION SYSTEMS, ACM SIGSPATIAL GIS 2022, 2022, : 105 - 116
  • [34] Forecasting of mobile network traffic and spatio-temporal analysis using modLSTM
    Aski, Vidyadhar J.
    Chavan, Rugved Sanjay
    Dhaka, Vijaypal Singh
    Rani, Geeta
    Zumpano, Ester
    Vocaturo, Eugenio
    MACHINE LEARNING, 2024, 113 (04) : 2277 - 2300
  • [35] PreSTNet: Pre-trained Spatio-Temporal Network for traffic forecasting
    Fang, Shen
    Ji, Wei
    Xiang, Shiming
    Hua, Wei
    INFORMATION FUSION, 2024, 106
  • [36] Spatio-Temporal Pivotal Graph Neural Networks for Traffic Flow Forecasting
    Kong, Weiyang
    Guo, Ziyu
    Liu, Yubao
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 8, 2024, : 8627 - 8635
  • [37] DMGSTCN: Dynamic Multigraph Spatio-Temporal Convolution Network for Traffic Forecasting
    Qin, Yanjun
    Tao, Xiaoming
    Fang, Yuchen
    Luo, Haiyong
    Zhao, Fang
    Wang, Chenxing
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (12): : 22208 - 22219
  • [38] A New Spatio-Temporal Neural Network Approach for Traffic Accident Forecasting
    de Medrano, Rodrigo
    Aznarte, Jose L.
    APPLIED ARTIFICIAL INTELLIGENCE, 2021, 35 (10) : 782 - 801
  • [39] Spatio-Temporal Pyramid Networks for Traffic Forecasting
    Hu, Jia
    Wang, Chu
    Lin, Xianghong
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT I, 2023, 14169 : 339 - 354
  • [40] MLP for Spatio-Temporal Traffic Volume Forecasting
    Dimara, Asimina
    Triantafyllidis, Dimitrios
    Krinidis, Stelios
    Kitsikoudis, Konstantinos
    Ioannidis, Dimosthenis
    Valkouma, Efthalia
    Skarvelakis, Stilianos
    Antipas, Stavros
    Tzovaras, Dimitrios
    2021 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2021, : 764 - 770