Challenges and opportunities in the development and clinical implementation of artificial intelligence based synthetic computed tomography for magnetic resonance only radiotherapy

被引:5
|
作者
Villegas, Fernanda [1 ,2 ]
Dal Bello, Riccardo [3 ,4 ]
Alvarez-Andres, Emilie [5 ,6 ,7 ]
Dhont, Jennifer [8 ,9 ]
Janssen, Tomas [10 ]
Milan, Lisa [11 ]
Robert, Charlotte [12 ,13 ]
Salagean, Ghizela-Ana-Maria [14 ,15 ]
Tejedor, Natalia [16 ]
Trnkova, Petra [17 ]
Fusella, Marco [18 ]
Placidi, Lorenzo [19 ]
Cusumano, Davide [20 ]
机构
[1] Karolinska Inst, Dept Oncol Pathol, Solna, Sweden
[2] Karolinska Univ Hosp, Med Radiat Phys & Nucl Med, Radiotherapy Phys & Engn, Stockholm, Sweden
[3] Univ Hosp Zurich, Dept Radiat Oncol, Zurich, Switzerland
[4] Univ Zurich, Zurich, Switzerland
[5] TUD Dresden Univ Technol, Helmholtz Zentrum Dresden Rossendorf, OncoRay Natl Ctr Radiat Res Oncol, Med Fac, Dresden, Germany
[6] TUD Dresden Univ Technol, Univ Hosp Carl Gustav Carus, Helmholtz Zentrum Dresden Rossendorf, Dresden, Germany
[7] TUD Dresden Univ Technol, Fac Med Carl Gustav Carus, Dresden, Germany
[8] Univ Libre Bruxelles ULB, Hop Univ Bruxelles HUB, Inst Jules Bordet, Dept Med Phys, Brussels, Belgium
[9] Univ Libre Bruxelles ULB, Radiophys & MRI Phys Lab, Brussels, Belgium
[10] Netherlands Canc Inst, Dept Radiat Oncol, Amsterdam, Netherlands
[11] Ente Osped Cantonale, Med Phys Div, Imaging Inst Southern Switzerland IIMSI, Bellinzona, Switzerland
[12] Paris Saclay Univ, Mol Radiotherapy & Therapeut Innovat UMR 1030, ImmunoRadAI, Inst Gustave Roussy,Inserm, Villejuif, France
[13] Gustave Roussy, Dept Radiat Oncol, Villejuif, France
[14] Babes Bolyai Univ, Fac Phys, Cluj Napoca, Romania
[15] TopMed Med Ctr, Dept Radiat Oncol, Targu Mures, Romania
[16] Hosp Santa Creu i St Pau, Dept Med Phys & Radiat Protect, Barcelona, Spain
[17] Med Univ Vienna, Dept Radiat Oncol, Vienna, Austria
[18] Abano Terme Hosp, Dept Radiat Oncol, Abano Terme, Italy
[19] Fdn Policlin Univ Agostino Gemelli, Dept Diag Imaging Oncol Radiotherapy & Hematol, IRCCS, Rome, Italy
[20] Mater Olbia Hosp, Str Statale Orientale Sarda 125, Olbia, Sassari, Italy
关键词
MR-only radiotherapy; MR-only planning; Synthetic CT; Clinical implementation; Deep learning; Artificial intelligence; CONVOLUTIONAL NEURAL-NETWORK; DEEP LEARNING APPROACH; MR-LINAC SYSTEMS; CT GENERATION; GUIDED RADIOTHERAPY; ONLY PHOTON; IMAGES; HEAD; RECOMMENDATIONS; UNCERTAINTIES;
D O I
10.1016/j.radonc.2024.110387
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Synthetic computed tomography (sCT) generated from magnetic resonance imaging (MRI) can serve as a substitute for planning CT in radiation therapy (RT), thereby removing registration uncertainties associated with multi -modality imaging pairing, reducing costs and patient radiation exposure. CE/FDA-approved sCT solutions are nowadays available for pelvis, brain, and head and neck, while more complex deep learning (DL) algorithms are under investigation for other anatomic sites. The main challenge in achieving a widespread clinical implementation of sCT lies in the absence of consensus on sCT commissioning and quality assurance (QA), resulting in variation of sCT approaches across different hospitals. To address this issue, a group of experts gathered at the ESTRO Physics Workshop 2022 to discuss the integration of sCT solutions into clinics and report the process and its outcomes. This position paper focuses on aspects of sCT development and commissioning, outlining key elements crucial for the safe implementation of an MRI-only RT workflow.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Artificial intelligence assisted whole organ pancreatic fat estimation on magnetic resonance imaging and correlation with pancreas attenuation on computed tomography
    Janssens, Laurens P.
    Takahashi, Hiroaki
    Nagayama, Hiroki
    Nugen, Fred
    Bamlet, William R.
    Oberg, Ann L.
    Fuemmeler, Eric
    Goenka, Ajit H.
    Erickson, Bradley J.
    Takahashi, Naoki
    Majumder, Shounak
    PANCREATOLOGY, 2023, 23 (05) : 556 - 562
  • [42] Artificial intelligence for left ventricular hypertrophy detection and differentiation on echocardiography, cardiac magnetic resonance and cardiac computed tomography: A systematic review
    Cirillo, Chiara
    Matarrese, Margherita A. G.
    Monda, Emanuele
    Pagnano, Maria Elisabetta
    Vitale, Jacopo
    Verrillo, Federica
    Palmiero, Giuseppe
    Bassolino, Sabrina
    Buono, Pietro
    Caiazza, Martina
    Loffredo, Francesco
    Pecchia, Leandro
    Limongelli, Giuseppe
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2025, 422
  • [43] Synthetic Computed Tomography Generation from 0.35T Magnetic Resonance Images for Magnetic Resonance-Only Radiation Therapy Planning Using Perceptual Loss Models
    Li, Xue
    Yadav, Poonam
    McMillan, Alan B.
    PRACTICAL RADIATION ONCOLOGY, 2022, 12 (01) : E40 - E48
  • [44] Development of artificial intelligence-based clinical decision support system for diagnosis of meniscal injury using magnetic resonance images
    Chou, Yi-Ting
    Lin, Ching-Ting
    Chang, Ting-An
    Wu, Ya-Lun
    Yu, Cheng-En
    Ho, Tsung-Yu
    Chen, Hui-Yi
    Hsu, Kai-Cheng
    Lee, Oscar Kuang-Sheng
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 82
  • [45] Magnetic Resonance-Based Automatic Air Segmentation for Generation of Synthetic Computed Tomography Scans in the Head Region
    Zheng, Weili
    Kim, Joshua P.
    Kadbi, Mo
    Movsas, Benjamin
    Chetty, Indrin J.
    Glide-Hurst, Carri K.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2015, 93 (03): : 497 - 506
  • [46] Efficient and Accurate Computed Tomography-Based Stone Volume Determination: Development of an Automated Artificial Intelligence Algorithm
    Cumpanas, Andrei D.
    Chantaduly, Chanon
    Morgan, Kalon L.
    Shao, Wei
    Gorgen, Antonio R. H.
    Tran, Candices Minh
    Wu, Yi Xi
    Mccormac, Amanda
    Tano, Zachary E.
    Patel, Roshan M.
    Chang, Peter
    Landman, Jaime
    Clayman, Ralph V.
    JOURNAL OF UROLOGY, 2024, 211 (02): : 256 - 265
  • [47] Development of an artificial intelligence-assisted computed tomography diagnosis technology for rib fracture and evaluation of its clinical usefulness
    Niiya, Akifumi
    Murakami, Kouzou
    Kobayashi, Rei
    Sekimoto, Atsuhito
    Saeki, Miho
    Toyofuku, Kosuke
    Kato, Masako
    Shinjo, Hidenori
    Ito, Yoshinori
    Takei, Mizuki
    Murata, Chiori
    Ohgiya, Yoshimitsu
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [48] Development of an artificial intelligence-assisted computed tomography diagnosis technology for rib fracture and evaluation of its clinical usefulness
    Akifumi Niiya
    Kouzou Murakami
    Rei Kobayashi
    Atsuhito Sekimoto
    Miho Saeki
    Kosuke Toyofuku
    Masako Kato
    Hidenori Shinjo
    Yoshinori Ito
    Mizuki Takei
    Chiori Murata
    Yoshimitsu Ohgiya
    Scientific Reports, 12
  • [49] An Inter-observer Study to Determine Radiotherapy Planning Target Volumes for Recurrent Gynaecological Cancer Comparing Magnetic Resonance Imaging Only With Computed Tomography-Magnetic Resonance Imaging
    Bernstein, D.
    Taylor, A.
    Nill, S.
    Imseeh, G.
    Kothari, G.
    Llewelyn, M.
    De Paepe, K. N.
    Rockall, A.
    Shiarli, A-M
    Oelfke, U.
    CLINICAL ONCOLOGY, 2021, 33 (05) : 307 - 313
  • [50] Magnetic resonance image (MRI) synthesis from brain computed tomography (CT) images based on deep learning methods for magnetic resonance (MR)-guided radiotherapy
    Li, Wen
    Li, Yafen
    Qin, Wenjian
    Liang, Xiaokun
    Xu, Jianyang
    Xiong, Jing
    Xie, Yaoqin
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2020, 10 (06) : 1223 - 1236