Cognitive Steering in Deep Neural Networks via Long-Range Modulatory Feedback Connections

被引:0
|
作者
Konkle, Talia [1 ]
Alvarez, George [1 ]
机构
[1] Harvard Univ, Ctr Brain Sci, Kempner Inst, Dept Psychol, Cambridge, MA 02138 USA
关键词
FEATURE-BASED ATTENTION; TOP-DOWN; VISUAL-ATTENTION; BOTTOM-UP; MECHANISMS; COMPETITION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given the rich visual information available in each glance, humans can internally direct their visual attention to enhance goal-relevant information-a capacity often absent in standard vision models. Here we introduce cognitively and biologically-inspired long-range modulatory pathways to enable 'cognitive steering' in vision models. First, we show that models equipped with these feedback pathways naturally show improved image recognition, adversarial robustness, and increased brain alignment, relative to baseline models. Further, these feedback projections from the final layer of the vision backbone provide a meaningful steering interface, where goals can be specified as vectors in the output space. We show that there are effective ways to steer the model that dramatically improve recognition of categories in composite images of multiple categories, succeeding where baseline feed-forward models without flexible steering fail. And, our multiplicative modulatory motif prevents rampant hallucination of the top-down goal category, dissociating what the model is looking for, from what it is looking at. Thus, these long-range modulatory pathways enable new behavioral capacities for goal-directed visual encoding, offering a flexible communication interface between cognitive and visual systems.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Long-range terrain perception using convolutional neural networks
    Zhang, Wei
    Chen, Qi
    Zhang, Weidong
    He, Xuanyu
    NEUROCOMPUTING, 2018, 275 : 781 - 787
  • [22] Infinite randomness critical behavior of the contact process on networks with long-range connections
    Juhasz, Robert
    Kovacs, Istvan A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
  • [23] Scalable hybrid deep neural networks/polarizable potentials biomolecular simulations including long-range effects
    Inizan, Theo Jaffrelot
    Ple, Thomas
    Adjoua, Olivier
    Ren, Pengyu
    Gokcan, Hatice
    Isayev, Olexandr
    Lagardere, Louis
    Piquemal, Jean-Philip
    CHEMICAL SCIENCE, 2023, 14 (20) : 5438 - 5452
  • [24] A deep convolutional neural network for diabetic retinopathy detection via mining local and long-range dependence
    Luo, Xiaoling
    Wang, Wei
    Xu, Yong
    Lai, Zhihui
    Jin, Xiaopeng
    Zhang, Bob
    Zhang, David
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2024, 9 (01) : 153 - 166
  • [25] PERCOLATION OF WORDS ON Zd WITH LONG-RANGE CONNECTIONS
    De Lima, B. N. B.
    Sanchis, R.
    Silva, R. W. C.
    JOURNAL OF APPLIED PROBABILITY, 2011, 48 (04) : 1152 - 1162
  • [26] Long-range connections enrich cortical computations
    Sato, Tatsuo K.
    NEUROSCIENCE RESEARCH, 2021, 162 : 1 - 12
  • [27] Long-range functional connections mirror and link microarchitectural and cognitive hierarchies in the human brain
    Wang, Yezhou
    Royer, Jessica
    Park, Bo-Yong
    de Wael, Reinder Vos
    Lariviere, Sara
    Tavakol, Shahin
    Rodriguez-Cruces, Raul
    Paquola, Casey
    Hong, Seok-Jun
    Margulies, Daniel S.
    Smallwood, Jonathan
    Valk, Sofie L.
    Evans, Alan C.
    Bernhardt, Boris C.
    CEREBRAL CORTEX, 2023, 33 (05) : 1782 - 1798
  • [28] Damage to long-range connections is especially relevant for cognitive impairment in multiple sclerosis.
    Meijer, K. A.
    Schoonheim, M. M.
    Douw, L.
    Steenwijk, M. D.
    Geurts, J. J.
    MULTIPLE SCLEROSIS JOURNAL, 2018, 24 : 39 - 39
  • [29] SHORT-RANGE AND LONG-RANGE CONNECTIONS IN AUTOASSOCIATIVE MEMORY
    OKANE, D
    TREVES, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (19): : 5055 - 5069
  • [30] Biologically plausible learning in neural networks with modulatory feedback
    Grant, W. Shane
    Tanner, James
    Itti, Laurent
    NEURAL NETWORKS, 2017, 88 : 32 - 48