Segmentation and Multi-Timepoint Tracking of 3D Cancer Organoids from Optical Coherence Tomography Images Using Deep Neural Networks

被引:0
|
作者
Branciforti, Francesco [1 ]
Salvi, Massimo [1 ]
D'Agostino, Filippo [1 ]
Marzola, Francesco [1 ]
Cornacchia, Sara [1 ]
De Titta, Maria Olimpia [1 ]
Mastronuzzi, Girolamo [1 ]
Meloni, Isotta [1 ]
Moschetta, Miriam [1 ]
Porciani, Niccolo [1 ]
Sciscenti, Fabrizio [1 ]
Spertini, Alessandro [1 ]
Spilla, Andrea [1 ]
Zagaria, Ilenia [1 ]
Deloria, Abigail J. [2 ]
Deng, Shiyu [2 ]
Haindl, Richard [2 ]
Szakacs, Gergely [3 ]
Csiszar, Agnes [3 ]
Liu, Mengyang [2 ]
Drexler, Wolfgang [2 ]
Molinari, Filippo [1 ]
Meiburger, Kristen M. [1 ]
机构
[1] Politecn Torino, Dept Elect & Telecommun, Med Lab, Corso Duca Abruzzi 24, I-10129 Turin, Italy
[2] Med Univ Vienna, Ctr Med Phys & Biomed Engn, A-1090 Vienna, Austria
[3] Med Univ Vienna, Ctr Canc Res, A-1090 Vienna, Austria
基金
欧盟地平线“2020”;
关键词
organoids; cancer; deep learning; optical coherence tomography; segmentation; tracking;
D O I
10.3390/diagnostics14121217
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Recent years have ushered in a transformative era in in vitro modeling with the advent of organoids, three-dimensional structures derived from stem cells or patient tumor cells. Still, fully harnessing the potential of organoids requires advanced imaging technologies and analytical tools to quantitatively monitor organoid growth. Optical coherence tomography (OCT) is a promising imaging modality for organoid analysis due to its high-resolution, label-free, non-destructive, and real-time 3D imaging capabilities, but accurately identifying and quantifying organoids in OCT images remain challenging due to various factors. Here, we propose an automatic deep learning-based pipeline with convolutional neural networks that synergistically includes optimized preprocessing steps, the implementation of a state-of-the-art deep learning model, and ad-hoc postprocessing methods, showcasing good generalizability and tracking capabilities over an extended period of 13 days. The proposed tracking algorithm thoroughly documents organoid evolution, utilizing reference volumes, a dual branch analysis, key attribute evaluation, and probability scoring for match identification. The proposed comprehensive approach enables the accurate tracking of organoid growth and morphological changes over time, advancing organoid analysis and serving as a solid foundation for future studies for drug screening and tumor drug sensitivity detection based on organoids.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Sex classification of 3D skull images using deep neural networks
    Noel, Lake
    Fat, Shelby Chun
    Causey, Jason L.
    Dong, Wei
    Stubblefield, Jonathan
    Szymanski, Kathryn
    Chang, Jui-Hsuan
    Wang, Paul Zhiping
    Moore, Jason H.
    Ray, Edward
    Huang, Xiuzhen
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [32] Segmentation of Drosophila heart in optical coherence microscopy images using convolutional neural networks
    Duan, Lian
    Qin, Xi
    He, Yuanhao
    Sang, Xialin
    Pan, Jinda
    Xu, Tao
    Men, Jing
    Tanzi, Rudolph E.
    Li, Airong
    Ma, Yutao
    Zhou, Chao
    JOURNAL OF BIOPHOTONICS, 2018, 11 (12)
  • [33] Organ segmentation from computed tomography images using the 3D convolutional neural network: a systematic review
    Ademola E. Ilesanmi
    Taiwo Ilesanmi
    Oluwagbenga P. Idowu
    Drew A. Torigian
    Jayaram K. Udupa
    International Journal of Multimedia Information Retrieval, 2022, 11 : 315 - 331
  • [34] 3D motion tracking using optical coherence tomography based on circular scan patterns
    Hao, Senyue
    Amaral, Marcello Magri
    Zhou, Chao
    OPTICAL COHERENCE TOMOGRAPHY AND COHERENCE DOMAIN OPTICAL METHODS IN BIOMEDICINE XXVII, 2023, 12367
  • [35] Organ segmentation from computed tomography images using the 3D convolutional neural network: a systematic review
    Ilesanmi, Ademola E.
    Ilesanmi, Taiwo
    Idowu, Oluwagbenga P.
    Torigian, Drew A.
    Udupa, Jayaram K.
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2022, 11 (03) : 315 - 331
  • [36] Publisher Correction: Automatic Choroid Layer Segmentation from Optical Coherence Tomography Images Using Deep Learning
    Saleha Masood
    Ruogu Fang
    Ping Li
    Huating Li
    Bin Sheng
    Akash Mathavan
    Xiangning Wang
    Po Yang
    Qiang Wu
    Jing Qin
    Weiping Jia
    Scientific Reports, 9
  • [37] Computational optical tomography using 3-D deep convolutional neural networks
    Thanh Nguyen
    Vy Bui
    Nehmetallah, George
    OPTICAL ENGINEERING, 2018, 57 (04)
  • [38] Fully automated segmentation of intraretinal cysts in 3D optical coherence tomography
    Venhuizen, Freerk
    van Grinsven, Mark J. J. P.
    van Ginneken, Bram
    Hoyng, Carel C. B.
    Theelen, Thomas
    Sanchez, Clara I.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (12)
  • [39] Automated Segmentation of Optical Coherence Tomography Images of the Human Tympanic Membrane Using Deep Learning
    Oghalai, Thomas P.
    Long, Ryan
    Kim, Wihan
    Applegate, Brian E.
    Oghalai, John S.
    ALGORITHMS, 2023, 16 (09)
  • [40] Segmentation of Retinal Low-Cost Optical Coherence Tomography Images using Deep Learning
    Kepp, Timo
    Sudkamp, Helge
    von der Burchard, Claus
    Schenke, Hendrik
    Koch, Peter
    Huettmann, Gereon
    Roider, Johann
    Heinrich, Mattias P.
    Handels, Heinz
    MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314