Solving a time-fractional semilinear hyperbolic equations by Fourier truncation with boundary conditions

被引:0
|
作者
Benmerrous, Abdelmjid [1 ]
Bourhim, Fatima Ezzahra [1 ]
El Mfadel, Ali [1 ]
Elomari, M'hamed [1 ]
机构
[1] Sultan Moulay Slimane Univ, Lab Appl Math & Sci Comp, POB 532, Beni Mellal 23000, Morocco
关键词
Semilinear hyperbolic equations; Fourier truncation method; Estimation; Fixed point theorems; Banach space; DIFFERENTIAL-EQUATIONS; RESPECT;
D O I
10.1016/j.chaos.2024.115086
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss a pioneering contribution in the field by addressing, for the first time, the Cauchy problem associated with fractional semilinear hyperbolic equations of order alpha is an element of (1, 2), involving a general form of fractional derivative. Introducing an a priori assumption on the solution, we advocate the application of the Fourier truncation method to address the inherent ill -posed nature of the problem. Furthermore, we establish a stability estimate of logarithmic type.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] New hyperbolic structures for the conformable time-fractional variant bussinesq equations
    Khalid K. Ali
    R. I. Nuruddeen
    K. R. Raslan
    Optical and Quantum Electronics, 2018, 50
  • [22] Fourier Truncation Regularization Method for a Time-Fractional Backward Diffusion Problem with a Nonlinear Source
    Yang, Fan
    Fan, Ping
    Li, Xiao-Xiao
    Ma, Xin-Yi
    MATHEMATICS, 2019, 7 (09)
  • [23] Well-posedness results for a class of semilinear time-fractional diffusion equations
    Bruno de Andrade
    Vo Van Au
    Donal O’Regan
    Nguyen Huy Tuan
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [24] Regional Controllability of Riemann-Liouville Time-Fractional Semilinear Evolution Equations
    Tajani, Asmae
    El Alaoui, Fatima Zahrae
    Boutoulout, Ali
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [25] A semilinear diffusion PDE with variable order time-fractional Caputo derivative subject to homogeneous Dirichlet boundary conditions
    Slodicka, Marian
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2025, 28 (01) : 38 - 75
  • [26] Well-posedness results for a class of semilinear time-fractional diffusion equations
    de Andrade, Bruno
    Vo Van Au
    O'Regan, Donal
    Nguyen Huy Tuan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (05):
  • [27] Boundary Element Collocation Method for Time-Fractional Diffusion Equations
    Kemppainen, J.
    Ruotsalainen, K.
    INTEGRAL METHODS IN SCIENCE AND ENGINEERING VOL 2: COMPUTATIONAL METHODS, 2010, : 223 - 232
  • [28] Comparison principles for the time-fractional diffusion equations with the Robin boundary conditions. Part I: Linear equations
    Luchko, Yuri
    Yamamoto, Masahiro
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (04) : 1504 - 1544
  • [29] Comparison principles for the time-fractional diffusion equations with the Robin boundary conditions. Part I: Linear equations
    Yuri Luchko
    Masahiro Yamamoto
    Fractional Calculus and Applied Analysis, 2023, 26 : 1504 - 1544