Thermalization of Two- and Three-Dimensional Classical Lattices

被引:2
|
作者
Wang, Zhen [1 ,2 ,3 ]
Fu, Weicheng [4 ,5 ]
Zhang, Yong [1 ,5 ]
Zhao, Hong [1 ,5 ]
机构
[1] Xiamen Univ, Dept Phys, Xiamen 361005, Fujian, Peoples R China
[2] Chinese Acad Sci, CAS Key Lab Theoret Phys, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Inst Theoret Phys, Beijing 100190, Peoples R China
[4] Tianshui Normal Univ, Dept Phys, Tianshui 741001, Gansu, Peoples R China
[5] Lanzhou Univ, Lanzhou Ctr Theoret Phys, Key Lab Theoret Phys Gansu Prov, Lanzhou 730000, Gansu, Peoples R China
基金
美国国家科学基金会;
关键词
HEAT-CONDUCTION; EQUIPARTITION; EQUILIBRIUM; ROUTE; CHAIN;
D O I
10.1103/PhysRevLett.132.217102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Understanding how systems achieve thermalization is a fundamental task in statistical physics. This Letter presents both analytical and numerical evidence showing that thermalization can be universally achieved in sufficiently large two- and three-dimensional lattices via weak nonlinear interactions. Thermalization time follows a universal scaling law unaffected by lattice structures, types of interaction potentials, or whether the lattice is ordered or not. Moreover, this study highlights the critical impact of dimensionality and degeneracy on thermalization dynamics.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Percolation on two- and three-dimensional lattices
    Martins, PHL
    Plascak, JA
    [J]. PHYSICAL REVIEW E, 2003, 67 (04) : 461191 - 461196
  • [2] Clustering in some randomly occupied two- and three-dimensional lattices
    Ulug, A
    Karakaplan, M
    Ulug, B
    [J]. CANADIAN JOURNAL OF PHYSICS, 2004, 82 (04) : 323 - 329
  • [3] Skyrmion-like states in two- and three-dimensional dynamical lattices
    Kevrekidis, P. G.
    Carretero-Gonzalez, R.
    Frantzeskakis, D. J.
    Malomed, B. A.
    Diakonos, F. K.
    [J]. PHYSICAL REVIEW E, 2007, 75 (02):
  • [4] Two- and three-dimensional surfaces
    Hauck, J
    Mika, K
    [J]. ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2002, 216 (11): : 1281 - 1293
  • [5] Energy thresholds for discrete breathers in one-, two-, and three-dimensional lattices
    Flach, S
    Kladko, K
    MacKay, RS
    [J]. PHYSICAL REVIEW LETTERS, 1997, 78 (07) : 1207 - 1210
  • [6] Elastic properties prediction of two- and three-dimensional multi-material lattices
    Mostofizadeh, Parham
    Dorey, Robert A.
    Mohagheghian, Iman
    [J]. THIN-WALLED STRUCTURES, 2024, 201
  • [7] q-Breathers in finite two- and three-dimensional nonlinear acoustic lattices
    Ivanchenko, M. V.
    Kanakov, O. I.
    Mishagin, K. G.
    Flach, S.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (02)
  • [8] Magnetic properties of the t-J model in two- and three-dimensional lattices
    Chang, Z
    [J]. PHYSICAL REVIEW B, 1998, 57 (05) : 2979 - 2990
  • [9] Defects in two- and three-dimensional soft lattices: Application to vortices in layered superconductors
    Brandt, EH
    [J]. PHYSICAL REVIEW B, 1997, 56 (14) : 9071 - 9081
  • [10] A simple method for fabricating two- and three-dimensional photorefractive photonic lattices microstructures
    Jin, Wentao
    Gao, Yuanmei
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2012, 51 (01) : 114 - 118