Energy thresholds for discrete breathers in one-, two-, and three-dimensional lattices

被引:154
|
作者
Flach, S [1 ]
Kladko, K [1 ]
MacKay, RS [1 ]
机构
[1] UNIV CAMBRIDGE,DEPT APPL MATH & THEORET PHYS,CAMBRIDGE CB3 9EW,ENGLAND
关键词
D O I
10.1103/PhysRevLett.78.1207
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Discrete breathers are time-periodic, spatially localized solutions of equations of motion for classical degrees of freedom interacting on a lattice. They come in one-parameter families. We report on studies of energy properties of breather families in one-, two-, and three-dimensional lattices. We show that breather energies have a positive lower bound if the lattice dimension of a given nonlinear lattice is greater than or equal to a certain critical value. These findings could be important for the experimental detection of discrete breathers.
引用
收藏
页码:1207 / 1210
页数:4
相关论文
共 50 条
  • [1] ONE-, TWO-, AND THREE-DIMENSIONAL ARRAYS.
    Adams, A.T.
    Leviatan, Yehuda
    [J]. IEEE Transactions on Electromagnetic Compatibility, 1987, EMC-29 (04) : 314 - 316
  • [2] One-, Two-, and Three-Dimensional Hopping Dynamics
    Aoki, Keiko M.
    Fujiwara, Susumu
    Soga, Kiyoshi
    Ohnishi, Shuhei
    Yamamoto, Takenori
    [J]. CRYSTALS, 2013, 3 (02): : 315 - 332
  • [3] Combining one-, two- and three-dimensional polyphenylene nanostructures
    Wu, JS
    Grimsdale, AC
    Müllen, K
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2005, 15 (01) : 41 - 52
  • [4] MMN elicited by one-, two-, and three-dimensional deviants
    Wolff, C
    Schroger, E
    [J]. JOURNAL OF PSYCHOPHYSIOLOGY, 1995, 9 (04) : 384 - 385
  • [5] One-, two- and three-dimensional nanostructures with atom lithography
    Oberthaler, MK
    Pfau, T
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2003, 15 (06) : R233 - R255
  • [6] q-Breathers in finite two- and three-dimensional nonlinear acoustic lattices
    Ivanchenko, M. V.
    Kanakov, O. I.
    Mishagin, K. G.
    Flach, S.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (02)
  • [7] One-, two-, and three-dimensional computer animation of complex vibration
    Montgomery, D.E.
    West, R.L.
    [J]. Modal analysis, 1995, 10 (01): : 1 - 18
  • [8] The prediction of one-, two-, and three-dimensional heave in expansive soils
    Vu, HQ
    Fredlund, DG
    [J]. CANADIAN GEOTECHNICAL JOURNAL, 2004, 41 (04) : 713 - 737
  • [9] Performance in one-, two- and three-dimensional terminal aiming tasks
    Hoffmann, Errol R.
    Drury, Colin G.
    Romanowski, Carol J.
    [J]. ERGONOMICS, 2011, 54 (12) : 1175 - 1185
  • [10] Polariton Condensation In One- And Two- Dimensional Acoustic Lattices
    Cerda-Mendez, E. A.
    Krizhanovskii, D. N.
    Biermann, K.
    Wouters, M.
    Hey, R.
    Santos, P. V.
    Skolnick, M. S.
    [J]. PHYSICS OF SEMICONDUCTORS: 30TH INTERNATIONAL CONFERENCE ON THE PHYSICS OF SEMICONDUCTORS, 2011, 1399