Multi-Objective Deep Reinforcement Learning for Efficient Workload Orchestration in Extreme Edge Computing

被引:0
|
作者
Safavifar, Zahra [1 ]
Gyamfi, Eric [1 ]
Mangina, Eleni [1 ]
Golpayegani, Fatemeh [1 ]
机构
[1] Univ Coll Dublin, Sch Comp Sci, Dublin 4, Ireland
来源
IEEE ACCESS | 2024年 / 12卷
基金
爱尔兰科学基金会;
关键词
Task analysis; Edge computing; Computational modeling; Deep reinforcement learning; Servers; Dynamic scheduling; Resource management; Reinforcement learning; workload orchestration; deep reinforcement learning (DRL); resource-constrained environment; extreme edge computing; RESOURCE-ALLOCATION;
D O I
10.1109/ACCESS.2024.3405411
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Workload orchestration at the edge of the network has become increasingly challenging with the ever-increasing penetration of resource demanding mobile, and heterogeneous devices offering low latency services. Literature has addressed this challenge assuming the availability of multi-access Mobile Edge Computing (MEC) servers and placing the computing tasks related to such services on the MEC servers. However, to develop a more sustainable and energy-efficient computing paradigm, for applications operating in stochastic environments with unpredictable workloads, it is essential to minimize the MEC servers' usage, and utilize the available resource-constrained edge devices, to keep the resourceful servers idle for handling any unpredictable larger workload. In this paper, we proposed DEWOrch, a deep reinforcement Learning algorithm for efficient workload orchestration. DEWOrch's aim is to increase the utilization of resource-constrained edge devices and minimize resource waste for more sustainable and energy efficient computing solution. This model is evaluated in an Extreme Edge Computing environment, where no MEC servers is available and only edge devices with constrained capacity are used to perform tasks. The results show that DEWOrch outperforms the state-of-the-art methods by around 50% decrease in resource waste while improved task success rate, and decreased energy consumption per task in most scenarios.
引用
收藏
页码:74558 / 74571
页数:14
相关论文
共 50 条
  • [31] Deep Reinforcement Learning for Online Latency Aware Workload Offloading in Mobile Edge Computing
    Akhavan, Zeinab
    Esmaeili, Mona
    Badnava, Babak
    Yousefi, Mohammad
    Sun, Xiang
    Devetsikiotis, Michael
    Zarkesh-Ha, Payman
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 2218 - 2223
  • [32] An Intelligent Scheduling Strategy in Fog Computing System Based on Multi-Objective Deep Reinforcement Learning Algorithm
    Ibrahim, Media Ali
    Askar, Shavan
    IEEE ACCESS, 2023, 11 : 133607 - 133622
  • [33] Improving Mobile Edge Computing Orchestration using Deep Reinforcement Learning through Environment Predictions
    Silva, Eliana Neuza
    da Silva, Fernando Mira
    2023 IEEE 9TH WORLD FORUM ON INTERNET OF THINGS, WF-IOT, 2023,
  • [34] Multi-condition multi-objective optimization using deep reinforcement learning
    Kim, Sejin
    Kim, Innyoung
    You, Donghyun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 462
  • [35] Multi-objective ω-Regular Reinforcement Learning
    Hahn, Ernst Moritz
    Perez, Mateo
    Schewe, Sven
    Somenzi, Fabio
    Trivedi, Ashutosh
    Wojtczak, Dominik
    FORMAL ASPECTS OF COMPUTING, 2023, 35 (02)
  • [36] Federated multi-objective reinforcement learning
    Zhao, Fangyuan
    Ren, Xuebin
    Yang, Shusen
    Zhao, Peng
    Zhang, Rui
    Xu, Xinxin
    INFORMATION SCIENCES, 2023, 624 : 811 - 832
  • [37] Multi-Objective Optimisation by Reinforcement Learning
    Liao, H. L.
    Wu, Q. H.
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [38] Deep reinforcement learning for multi-objective combinatorial optimization: A case study on multi-objective traveling salesman problem
    Li, Shicheng
    Wang, Feng
    He, Qi
    Wang, Xujie
    SWARM AND EVOLUTIONARY COMPUTATION, 2023, 83
  • [39] A Two-Stage Multi-Objective Deep Reinforcement Learning Framework
    Chen, Diqi
    Wang, Yizhou
    Gao, Wen
    ECAI 2020: 24TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, 325 : 1063 - 1070
  • [40] Multi-Objective Deep Reinforcement Learning for Variable Speed Limit Control
    Rhanizar, Asmae
    El Akkaoui, Zineb
    2024 16TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, ICMLC 2024, 2024, : 621 - 627