On the Musielak-Orlicz-Gauss Image Problem

被引:0
|
作者
Uang, Qingzhong [1 ]
Xing, Sudan [2 ]
Ye, Deping [3 ]
Zhu, Baocheng [4 ]
机构
[1] Jiaxing Univ, Coll Data Sci, Jiaxing 314001, Zhejiang, Peoples R China
[2] 2801 S Univ Ave,ETAS 410, Little Rock, AR 72204 USA
[3] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
[4] Shaanxi Normal Univ, Sch Math & Stat, Xian 710062, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Aleksandrov problem; curvature measure; dual curvature measure; dual Minkowski problem; Gauss image problem; Musielak-Orlicz addition; Musielak-Orlicz function; Orlicz-Minkowski problem; P-MINKOWSKI PROBLEM; ALEKSANDROV PROBLEM; EXISTENCE; UNIQUENESS; CURVATURE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we initiate the study of the Musielak-Orlicz-Brunn-Minkowski theory for convex bodies. In particular, we develop the Musielak-Orlicz-Gauss image problem aiming to characterize the Musielak-Orlicz-Gauss image measure of convex bodies. For a convex body K , its MusielakOrlicz-Gauss image measure, denoted by C (Theta) (K, <middle dot> ) , involves a triple Theta = (G, Psi , lambda) where G and Psi are two Musielak-Orlicz functions defined on S( n - 1 )x ( 0 , infinity) , and lambda is a nonzero finite Lebesgue measure on the unit sphere S (n -1) . Such a measure can be produced by a variational formula of V (G,lambda) (K) (the general dual volume of K with respect to lambda ) under the perturbations of K by the Musielak-Orlicz addition defined via the function Psi . The Musielak-Orlicz-Gauss image problem contains many intensively studied Minkowski-type problems and the recent Gauss image problem as its special cases. Under the condition that G is decreasing on its second variable, the existence of solutions to this problem is established.
引用
收藏
页码:537 / 580
页数:44
相关论文
共 50 条
  • [1] A flow approach to the Musielak-Orlicz-Gauss image problem
    Li, Qi-Rui
    Sheng, Weimin
    Ye, Deping
    Yi, Caihong
    ADVANCES IN MATHEMATICS, 2022, 403
  • [2] Convex hypersurfaces with prescribed Musielak-Orlicz-Gauss image measure
    Li, Qi-Rui
    Yi, Caihong
    ADVANCED NONLINEAR STUDIES, 2023, 23 (01)
  • [3] On a nonlinear general eigenvalue problem in Musielak-Orlicz spaces
    Kassimi, Soufiane
    Sabiki, Hajar
    Moussa, Hicham
    GEORGIAN MATHEMATICAL JOURNAL, 2024,
  • [4] Entropy and Renormalized Solutions for a Nonlinear Elliptic Problem in Musielak–Orlicz Spaces
    L. M. Kozhevnikova
    Journal of Mathematical Sciences, 2024, 283 (2) : 255 - 271
  • [5] Property (k-β) of Musielak-Orlicz and Musielak-Orlicz-Cesaro spaces
    Manna, Atanu
    Srivastava, P. D.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (02) : 471 - 486
  • [6] The eigenvalue problem for Kirchhoff-type operators in Musielak–Orlicz spaces
    Osvaldo Méndez
    Arabian Journal of Mathematics, 2023, 12 : 613 - 631
  • [7] The Gauss Image Problem
    Boroczky, Karoly J.
    Lutwak, Erwin
    Yang, Deane
    Zhang, Gaoyong
    Zhao, Yiming
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2020, 73 (07) : 1406 - 1452
  • [8] Flow by Gauss curvature to the orlicz chord Minkowski problem
    Zhao, Xia
    Zhao, Peibiao
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2024, 203 (05) : 2405 - 2424
  • [9] Inverse Gauss Curvature Flows and Orlicz Minkowski Problem
    Bin Chen
    Cui, Jingshi
    Zhao, Peibiao
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2022, 10 (01): : 330 - 343
  • [10] Lagrange Multiplier Rule to a Nonlinear Eigenvalue Problem in Musielak-Orlicz Spaces
    Khaled, Mohammed
    Rhoudaf, Mohamed
    Sabiki, Hajar
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (02) : 134 - 157