The analysis of stress-strain states in the joints of structures, represented by a connector made of two steel plates connected in a "dovetail" manner, has been conducted in this study. The investigation is based on the finite element method (FEM). As an example, the joint structure under static loading conditions is considered. The results presented in the study demonstrate the complex process of changing contact conditions on the connector's contact surfaces. The computational approach used allows for identifying patterns of how the steel grade influences the product's performance. Typically, aluminum-based alloys are used in manufacturing such joints; however, this study suggests the possibility and feasibility of enhancing the efficiency of using such joints by utilizing specific compositions of steel. This study examines various grades of steel, analyzes their stress-strain states under static loads, and evaluates their impact on the strength of structural joints. The research justifies the theoretical possibility of using different steel grades for joints, thereby expanding the range of available options for such joints in general. Numerical simulations were carried out using the ANSYS Workbench 2022 R2 software suite, considering a linear physical model of the materials under investigation, which allows assessing the actual stress states of the structures while considering variations in steel grades. Minimum stress values, both normal (61.96 MPa) and shear stresses (61.02 MPa), were recorded in alloyed steel grade 30Kh. The reduction in stress levels when using grade 30Kh steel compared to aluminum alloy grade D12 amounted to 72.48 % for normal stresses and 71.98 % for shear stresses. Summarizing the research results leads to a scientifically grounded conclusion regarding the feasibility of using alloyed steels for manufacturing connectors to join structures. The trends observed indicate a reduction in material consumption for joints by decreasing connector cross-sections while maintaining their load-bearing capacity.