A continuous benchmarking infrastructure for high-performance computing applications

被引:0
|
作者
Alt, Christoph [1 ,2 ]
Lanser, Martin [3 ,4 ]
Plewinski, Jonas [1 ]
Janki, Atin [6 ]
Klawonn, Axel [3 ,4 ]
Koestler, Harald [1 ,5 ]
Selzer, Michael [7 ]
Ruede, Ulrich [1 ,8 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Chair Comp Sci Syst Simulat 10, Cauer Str 11, D-91058 Erlangen, Germany
[2] Paderborn Univ, Paderborn Ctr Parallel Comp, Warburger Str 100, D-33098 Paderborn, Germany
[3] Univ Cologne, Dept Math & Comp Sci, Cologne, Germany
[4] Univ Cologne, Ctr Data & Simulat Sci, Cologne, Germany
[5] Erlangen Natl High Performance Comp Ctr NHR FAU, Erlangen, Germany
[6] Karlsruhe Inst Technol KIT, Inst Appl Mat IAM, Karlsruhe, Germany
[7] Karlsruhe Inst Technol KIT, Inst Nanotechnol INT, Eggenstein Leopoldshafen, Germany
[8] CERFACS, Toulouse, France
关键词
Continuous integration; continuous Benchmarking; finite elements method; computational homogenization; lattice Boltzmann method; FETI-DP;
D O I
10.1080/17445760.2024.2360190
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For scientific software, especially those used for large-scale simulations, achieving good performance and efficiently using the available hardware resources is essential. It is important to regularly perform benchmarks to ensure the efficient use of hardware and software when systems are changing and the software evolves. However, this can become quickly very tedious when many options for parameters, solvers, and hardware architectures are available. We present a continuous benchmarking strategy that automates benchmarking new code changes on high-performance computing clusters. This makes it possible to track how each code change affects the performance and how it evolves.
引用
收藏
页码:501 / 523
页数:23
相关论文
共 50 条
  • [31] High-Performance Cloud Computing: A View of Scientific Applications
    Vecchiola, Christian
    Pandey, Suraj
    Buyya, Rajkumar
    [J]. 2009 10TH INTERNATIONAL SYMPOSIUM ON PERVASIVE SYSTEMS, ALGORITHMS, AND NETWORKS (ISPAN 2009), 2009, : 4 - 16
  • [32] Data monitoring in high-performance clusters for computing applications
    Torralba, G
    González, V
    Sanchis, E
    Tao, J
    Schulz, M
    Karl, W
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2002, 49 (02) : 525 - 531
  • [33] Harnessing the Crowd for Autotuning High-Performance Computing Applications
    Cho, Younghyun
    Demmel, James W.
    King, Jacob
    Li, Xiaoye S.
    Liu, Yang
    Luo, Hengrui
    [J]. 2023 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM, IPDPS, 2023, : 635 - 645
  • [34] High-Performance Computing: Fundamental Problems in Industrial Applications
    Chetverushkin, B. N.
    [J]. PARALLEL, DISTRIBUTED AND GRID COMPUTING FOR ENGINEERING, 2009, 21 : 369 - 388
  • [35] HIGH-PERFORMANCE COMPUTING/COMPUTERS - SIMULATION MODELING AND APPLICATIONS
    OBAIDAT, MS
    [J]. SIMULATION, 1993, 61 (03) : 149 - 150
  • [36] Debugging High-Performance Computing Applications at Massive Scales
    Laguna, Ignacio
    Ahn, Dong H.
    de Supinski, Bronis R.
    Gamblin, Todd
    Lee, Gregory L.
    Schulz, Martin
    Bagchi, Saurabh
    Kulkarni, Milind
    Zhou, Bowen
    Chen, Zhezhe
    Qin, Feng
    [J]. COMMUNICATIONS OF THE ACM, 2015, 58 (09) : 72 - 81
  • [37] Topic 16 -: Applications of high-performance and Grid computing
    Bair, R
    Seidel, E
    Daydé, M
    Palma, JL
    [J]. EURO-PAR 2005 PARALLEL PROCESSING, PROCEEDINGS, 2005, 3648 : 1205 - 1205
  • [38] Benchmarking of high throughput computing applications on Grids
    Montero, R. S.
    Huedo, E.
    Llorente, I. M.
    [J]. PARALLEL COMPUTING, 2006, 32 (04) : 267 - 279
  • [39] High-Performance Computing
    Bungartz, Hans-Joachim
    [J]. IT-INFORMATION TECHNOLOGY, 2013, 55 (03): : 83 - 85