Research on Vibration Accumulation Self-Powered Downhole Sensor Based on Triboelectric Nanogenerators

被引:3
|
作者
Wang, Rui [1 ]
Ren, Jianchao [1 ]
Ding, Weibo [1 ]
Liu, Maofu [1 ]
Pan, Guangzhi [2 ]
Wu, Chuan [2 ]
机构
[1] Shaanxi Shaanxi Coal Caojiatan Min Co Ltd, Yulin 719100, Peoples R China
[2] China Univ Geosci Wuhan, Fac Mech & Elect Informat, Wuhan 430074, Peoples R China
关键词
triboelectric nanogenerator; self-powered; vibration sensor; high output performance; vibration accumulation; ACCELERATION SENSOR;
D O I
10.3390/mi15040548
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In drilling operations, measuring vibration parameters is crucial for enhancing drilling efficiency and ensuring safety. Nevertheless, the conventional vibration measurement sensor significantly extends the drilling cycle due to its dependence on an external power source. Therefore, we propose a vibration-accumulation-type self-powered sensor in this research, aiming to address these needs. By leveraging vibration accumulation and electromagnetic power generation to accelerate charging, the sensor's output performance is enhanced through a complementary charging mode. The experimental results regarding sensing performance demonstrate that the sensor possesses a measurement range spanning from 0 to 11 Hz, with a linearity of 3.2% and a sensitivity of 1.032. Additionally, it exhibits a maximum average measurement error of less than 4%. The experimental results of output performance measurement indicate that the sensor unit and generator set exhibit a maximum output power of 0.258 mu W and 25.5 mW, respectively, and eight LED lights can be lit at the same time. When the sensor unit and power generation unit output together, the maximum output power of the sensor is also 25.5 mW. Furthermore, we conducted tests on the sensor's output signal in conditions of high temperature and humidity, confirming its continued functionality in such environments. This sensor not only achieves self-powered sensing capabilities, addressing the power supply challenges faced by traditional downhole sensors, but also integrates energy accumulation with electromagnetic power generation to enhance its output performance. This innovation enables the sensor to harness downhole vibration energy for powering other micro-power devices, showcasing promising application prospects.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Recent Progress in Self-powered Graphene-Based Triboelectric Nanogenerators
    Salemi, F.
    Karimzadeh, F.
    Abbasi, M. H.
    Moradi, F.
    Kim, J.
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING-GREEN TECHNOLOGY, 2025, 12 (02) : 749 - 779
  • [32] Implantable Triboelectric Nanogenerators for Self-Powered Cardiovascular Healthcare
    Che, Ziyuan
    O'Donovan, Sarah
    Xiao, Xiao
    Wan, Xiao
    Chen, Guorui
    Zhao, Xun
    Zhou, Yihao
    Yin, Junyi
    Chen, Jun
    SMALL, 2023, 19 (51)
  • [33] Progress in triboelectric nanogenerators as self-powered smart sensors
    Zhang, Nannan
    Tao, Changyuan
    Fan, Xing
    Chen, Jun
    JOURNAL OF MATERIALS RESEARCH, 2017, 32 (09) : 1628 - 1646
  • [34] High Performance Triboelectric Nanogenerators for Self-Powered Electronics
    Baik, Jeong Min
    2019 13TH IEEE INTERNATIONAL CONFERENCE ON NANO/MOLECULAR MEDICINE & ENGINEERING (IEEE-NANOMED 2019), 2019, : 40 - 40
  • [35] Innovative Technology for Self-Powered Sensors: Triboelectric Nanogenerators
    Wang, Nannan
    Liu, Yupeng
    Ye, Enyi
    Li, Zibiao
    Wang, Daoai
    ADVANCED SENSOR RESEARCH, 2023, 2 (05):
  • [36] Triboelectric Nanogenerators as a Self-Powered Motion Tracking System
    Chen, Mengxiao
    Li, Xiaoyi
    Lin, Long
    Du, Weiming
    Han, Xun
    Zhu, Jing
    Pan, Caofeng
    Wang, Zhong Lin
    ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (32) : 5059 - 5066
  • [37] Triboelectric nanogenerators for self-powered sensors and other applications
    Lee, Chengkuo
    Qin, Yong
    Wang, Yi-Cheng
    MRS BULLETIN, 2025,
  • [38] Advances in Triboelectric Nanogenerators for Self-Powered Regenerative Medicine
    Parandeh, Samira
    Etemadi, Niloofar
    Kharaziha, Mahshid
    Chen, Guorui
    Nashalian, Ardo
    Xiao, Xiao
    Chen, Jun
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (47)
  • [39] Textile-Based Triboelectric Nanogenerators for Wearable Self-Powered Microsystems
    Huang, Peng
    Wen, Dan-Liang
    Qiu, Yu
    Yang, Ming-Hong
    Tu, Cheng
    Zhong, Hong-Sheng
    Zhang, Xiao-Sheng
    MICROMACHINES, 2021, 12 (02)
  • [40] Flexible self-powered supercapacitors integrated with triboelectric nanogenerators
    Rani, Shalu
    Khandelwal, Gaurav
    Kumar, Sanjay
    Pillai, Suresh C.
    Stylios, George K.
    Gadegaard, Nikolaj
    Mulvihill, Daniel M.
    ENERGY STORAGE MATERIALS, 2025, 74