Lipschitz images and dimensions

被引:2
|
作者
Balka, Richard [1 ,2 ]
Keleti, Tamas [3 ]
机构
[1] HUN REN Alfred Reny Inst Math, Realtanoda U 13-15, H-1053 Budapest, Hungary
[2] Eszterhazy Karoly Catholic Univ, Inst Math & Informat, Leanyka U 4, H-3300 Eger, Hungary
[3] Eotvos Lorand Univ, Inst Math, Pazmany Peter setany 1 C, H-1117 Budapest, Hungary
基金
芬兰科学院;
关键词
Lipschitz and H & ouml; lder maps; Bilipschitz equivalence; Self-similar set; Hausdorff dimension; Box dimensions; Ultrametric space; HAUSDORFF DIMENSION; RECTIFIABLE CURVES; SETS; EQUIVALENCE; SUBSETS;
D O I
10.1016/j.aim.2024.109669
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the question which compact metric spaces can be obtained as a Lipschitz image of the middle third Cantor set, or more generally, as a Lipschitz image of a subset of a given compact metric space. In the general case we prove that if A and B are compact metric spaces and the Hausdorff dimension of A is bigger than the upper box dimension of B, then there exist a compact set A ' subset of A and a Lipschitz onto map f : A ' -> B. As a corollary we prove that any 'natural' dimension in R-n must be between the Hausdorff and upper box dimensions. We show that if A and B are self -similar sets with the strong separation condition with equal Hausdorff dimension and A is homogeneous, then A can be mapped onto B by a Lipschitz map if and only if A and B are bilipschitz equivalent. For given alpha > 0 we also give a characterization of those compact metric spaces that can be obtained as an alpha-H & ouml;lder image of a compact subset of R. The quantity we introduce for this turns out to be closely related to the upper box dimension. (c) 2024 The Author(s). Published by Elsevier Inc. This is an
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Lipschitz Images of Open Sets on Sub-Lorentzian Structures
    Karmanova M.B.
    Siberian Advances in Mathematics, 2024, 34 (1) : 67 - 79
  • [22] DIMENSIONS OF ADOLESCENT SELF-IMAGES
    HAUSER, ST
    SHAPIRO, RL
    JOURNAL OF YOUTH AND ADOLESCENCE, 1972, 1 (04) : 339 - 353
  • [23] Adding Dimensions to Unimodal Cardiac Images
    Sengupta, Partho P.
    Marwick, Thomas H.
    Narula, Jagat
    JACC-CARDIOVASCULAR IMAGING, 2011, 4 (07) : 816 - 818
  • [24] HJB equations in infinite dimensions with locally Lipschitz Hamiltonian and unbounded terminal condition
    Masiero, Federica
    Richou, Adrien
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (06) : 1989 - 2034
  • [25] A Gradient Sampling Method With Complexity Guarantees for Lipschitz Functions in High and Low Dimensions
    Davis, Damek
    Drusvyatskiy, Dmitriy
    Lee, Yin Tat
    Padmanabhan, Swati
    Ye, Guanghao
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [26] Dimensions in infinite iterated function systems consisting of bi-Lipschitz mappings
    Chu, Chih-Yung
    Ngai, Sze-Man
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2020, 35 (04): : 549 - 583
  • [27] The range of the gradient of a Lipschitz C1-smooth bump in infinite dimensions
    Borwein, JM
    Fabian, M
    Loewen, PD
    ISRAEL JOURNAL OF MATHEMATICS, 2002, 132 (1) : 239 - 251
  • [28] PATERNAL AND MATERNAL SYMBOLIC DIMENSIONS IN PARENTAL IMAGES
    HOORNAERT, F
    PIERLOOT, R
    PSYCHOLOGICA BELGICA, 1975, 15 (01) : 11 - 27
  • [29] A METHOD FOR DETERMINATION OF FRACTAL DIMENSIONS OF SIALOGRAPHIC IMAGES
    HONDA, E
    DOMON, M
    SASAKI, T
    INVESTIGATIVE RADIOLOGY, 1991, 26 (10) : 894 - 901
  • [30] An Approach to the Estimation of Dimensions from Static Images
    Jakab, Frantisek
    Kainz, Ondrej
    Michalko, Miroslav
    Petija, Rastislav
    MATHEMATICAL MODELING AND COMPUTATIONAL PHYSICS 2019 (MMCP 2019), 2020, 226