Lipschitz images and dimensions

被引:2
|
作者
Balka, Richard [1 ,2 ]
Keleti, Tamas [3 ]
机构
[1] HUN REN Alfred Reny Inst Math, Realtanoda U 13-15, H-1053 Budapest, Hungary
[2] Eszterhazy Karoly Catholic Univ, Inst Math & Informat, Leanyka U 4, H-3300 Eger, Hungary
[3] Eotvos Lorand Univ, Inst Math, Pazmany Peter setany 1 C, H-1117 Budapest, Hungary
基金
芬兰科学院;
关键词
Lipschitz and H & ouml; lder maps; Bilipschitz equivalence; Self-similar set; Hausdorff dimension; Box dimensions; Ultrametric space; HAUSDORFF DIMENSION; RECTIFIABLE CURVES; SETS; EQUIVALENCE; SUBSETS;
D O I
10.1016/j.aim.2024.109669
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the question which compact metric spaces can be obtained as a Lipschitz image of the middle third Cantor set, or more generally, as a Lipschitz image of a subset of a given compact metric space. In the general case we prove that if A and B are compact metric spaces and the Hausdorff dimension of A is bigger than the upper box dimension of B, then there exist a compact set A ' subset of A and a Lipschitz onto map f : A ' -> B. As a corollary we prove that any 'natural' dimension in R-n must be between the Hausdorff and upper box dimensions. We show that if A and B are self -similar sets with the strong separation condition with equal Hausdorff dimension and A is homogeneous, then A can be mapped onto B by a Lipschitz map if and only if A and B are bilipschitz equivalent. For given alpha > 0 we also give a characterization of those compact metric spaces that can be obtained as an alpha-H & ouml;lder image of a compact subset of R. The quantity we introduce for this turns out to be closely related to the upper box dimension. (c) 2024 The Author(s). Published by Elsevier Inc. This is an
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Lipschitz images of Haar null sets
    Matousková, E
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2000, 32 : 235 - 244
  • [2] Fractal dimensions of fractal transformations and quantization dimensions for bi-Lipschitz mappings
    Priyadarshi, Amit
    Verma, Manuj
    Verma, Saurabh
    JOURNAL OF FRACTAL GEOMETRY, 2025, 12 (1-2) : 1 - 33
  • [3] Quasi-Lipschitz mapping, correlation and local dimensions
    Yang, Jiaojiao
    Wu, Min
    Zhang, Yiwei
    CHAOS SOLITONS & FRACTALS, 2017, 105 : 224 - 229
  • [4] Dimensions of Fractals Generated by Bi-Lipschitz Maps
    Deng, Rong
    Ngai, Sze-Man
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [5] Lipschitz-Killing curvatures and polar images
    Dutertre, Nicolas
    ADVANCES IN GEOMETRY, 2019, 19 (02) : 205 - 230
  • [6] Dimension of images and graphs of little Lipschitz functions
    Hanson, Bruce
    Pierce, Pamela
    Zeleny, Miroslav
    Zindulka, Ondrej
    FUNDAMENTA MATHEMATICAE, 2023, 262 (01) : 37 - 70
  • [7] Typical Lipschitz images of rectifiable metric spaces
    Bate, David
    Takac, Jakub
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2024, 2024 (810): : 139 - 188
  • [8] Lipschitz images with fractal boundaries and their small surface wrapping
    Buczolich, Z
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (12) : 3589 - 3595
  • [9] Lipschitz harmonic capacity and bilipschitz images of Cantor sets
    Garnett, John
    Prat, Laura
    Tolsa, Xavier
    MATHEMATICAL RESEARCH LETTERS, 2006, 13 (5-6) : 865 - 884
  • [10] Ladar images in three dimensions
    Boas, Gary
    Photonics Spectra, 2003, 37 (02) : 22 - 24