机构:
HUN REN Alfred Reny Inst Math, Realtanoda U 13-15, H-1053 Budapest, Hungary
Eszterhazy Karoly Catholic Univ, Inst Math & Informat, Leanyka U 4, H-3300 Eger, HungaryHUN REN Alfred Reny Inst Math, Realtanoda U 13-15, H-1053 Budapest, Hungary
Balka, Richard
[1
,2
]
Keleti, Tamas
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Univ, Inst Math, Pazmany Peter setany 1 C, H-1117 Budapest, HungaryHUN REN Alfred Reny Inst Math, Realtanoda U 13-15, H-1053 Budapest, Hungary
Keleti, Tamas
[3
]
机构:
[1] HUN REN Alfred Reny Inst Math, Realtanoda U 13-15, H-1053 Budapest, Hungary
[2] Eszterhazy Karoly Catholic Univ, Inst Math & Informat, Leanyka U 4, H-3300 Eger, Hungary
[3] Eotvos Lorand Univ, Inst Math, Pazmany Peter setany 1 C, H-1117 Budapest, Hungary
We consider the question which compact metric spaces can be obtained as a Lipschitz image of the middle third Cantor set, or more generally, as a Lipschitz image of a subset of a given compact metric space. In the general case we prove that if A and B are compact metric spaces and the Hausdorff dimension of A is bigger than the upper box dimension of B, then there exist a compact set A ' subset of A and a Lipschitz onto map f : A ' -> B. As a corollary we prove that any 'natural' dimension in R-n must be between the Hausdorff and upper box dimensions. We show that if A and B are self -similar sets with the strong separation condition with equal Hausdorff dimension and A is homogeneous, then A can be mapped onto B by a Lipschitz map if and only if A and B are bilipschitz equivalent. For given alpha > 0 we also give a characterization of those compact metric spaces that can be obtained as an alpha-H & ouml;lder image of a compact subset of R. The quantity we introduce for this turns out to be closely related to the upper box dimension. (c) 2024 The Author(s). Published by Elsevier Inc. This is an
机构:
Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
Yang, Jiaojiao
Wu, Min
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Math, Guangzhou 510641, Guangdong, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
Wu, Min
Zhang, Yiwei
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
Huazhong Univ Sci & Technol, Ctr Math Sci, Wuhan 430074, Hubei, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
机构:
Fujian Normal Univ, Dept Math, Fuzhou 350007, Peoples R ChinaFujian Normal Univ, Dept Math, Fuzhou 350007, Peoples R China
Deng, Rong
Ngai, Sze-Man
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
Georgia So Univ, Dept Math Sci, Statesboro, GA 30460 USAFujian Normal Univ, Dept Math, Fuzhou 350007, Peoples R China