Maximizing Accuracy in AI-Driven Pattern Detection in Cardiac Care

被引:0
|
作者
Chauhan, Ritu [1 ]
Singh, Dhananjay [2 ]
机构
[1] Amity Univ, Artificial Intelligence & IoT Lab, Ctr Computat Biol & Bioinformat, Noida, India
[2] St Louis Univ, ReSENSE Lab, Sch Profess Studies, St Louis, MO 63103 USA
关键词
Heart disease; Factors of heart diseases; Prediction; AI; Machine learning; Cardiovascular disease; DISEASES; HEALTH;
D O I
10.1007/978-3-031-53827-8_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Artificial Intelligence (AI) has laid down the platform where all the emerging fields can benefit for detection of patterns. In similar, evolving AI technology has revolutionized the traditional healthcare technology to other level of technological advancement. Hence, Machine learning paradigms are designed to transform the era of learning and retrieval of hidden patterns from the healthcare databases. The current scope of the work focuses on detecting patterns from car diac care database using machine learning. The database comprise of several features such as age, gender, smoking variable, blood pressure, diabetes, alcohol consumption, sleep variables and other features which can be the potential cause for the prognosis of the disease Further, the databases applicability is measured with different classifiers such K nearest neighbours (KNN), Adaboost, XGboost, Gradient Boost, Decision Tree Logistic Regression, and Random Forest Classifiers to determine the most relevant classifier for the prognosis of the disease. The results suggest that Xgboost works efficiently with higher accuracy rate as compared to other classifiers.
引用
收藏
页码:176 / 187
页数:12
相关论文
共 50 条
  • [21] Collaborative Feature Maps of Networks and Hosts for AI-driven Intrusion Detection
    Liu, Jinxin
    Simsek, Murat
    Kantarci, Burak
    Bagheri, Mehran
    Djukic, Petar
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 2662 - 2667
  • [22] AI-driven detection and analysis of label-free protein aggregates
    Ibrahim, Khalid A.
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2024, 25 (03) : 159 - 159
  • [23] AI-driven real-time failure detection in additive manufacturing
    Bhattacharya, Mangolika
    Penica, Mihai
    O'Connell, Eoin
    Hayes, Martin
    5TH INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING, ISM 2023, 2024, 232 : 3229 - 3238
  • [24] AI-Driven Performance Modeling for AI Inference Workloads
    Sponner, Max
    Waschneck, Bernd
    Kumar, Akash
    ELECTRONICS, 2022, 11 (15)
  • [25] AI-driven promoter optimization at MeiraGTx
    Mossotto, E.
    Lee, D.
    Sullivan, J.
    During, M.
    Forbes, A.
    Liu, C. F.
    HUMAN GENE THERAPY, 2022, 33 (23-24) : A50 - A51
  • [26] AI-driven predictive models for sustainability
    Olawumi, Mattew A.
    Oladapo, Bankole I.
    Journal of Environmental Management, 2025, 373
  • [27] Managerial hierarchy in AI-driven organizations
    Oliver Baumann
    Brian Wu
    Journal of Organization Design, 2023, 12 : 1 - 5
  • [28] Advancements in AI-Driven Customer Service
    Esmaeili, Mona
    Ahmadi, Mohammad
    Ismaeil, Mohammad David
    Mirzaei, Sharareh
    Verdial, Jorge Canales
    2024 IEEE 5TH ANNUAL WORLD AI IOT CONGRESS, AIIOT 2024, 2024, : 0100 - 0104
  • [29] AI-Driven Network Security and Privacy
    Tan, Yu-an
    Zhang, Qikun
    Li, Yuanzhang
    Yu, Xiao
    ELECTRONICS, 2024, 13 (12)
  • [30] XiaoMu: an AI-driven assistant for MOOCs
    Song, Zhengyang
    Tang, Jie
    Liu, Tracy Xiao
    Zheng, Wenjiang
    Wu, Lili
    Feng, Wenzheng
    Zhang, Jing
    SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (06)