Practical Critic Gradient based Actor Critic for On-Policy Reinforcement Learning

被引:0
|
作者
Gurumurthy, Swaminathan [1 ]
Manchester, Zachary [1 ]
Kolter, J. Zico [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[2] Bosch Ctr AI, Sunnyvale, CA USA
关键词
Reinforcement Learning; Actor Critic; Continuous control; Highly parallel Environments;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
On-policy reinforcement learning algorithms have been shown to be remarkably efficient at learning policies for continuous control robotics tasks. They are highly parallelizable and hence have benefited tremendously from the recent rise in GPU based parallel simulators. The most widely used on-policy reinforcement learning algorithm is proximal policy optimization (PPO) which was introduced in 2017 and was designed for a somewhat different setting with CPU based serial or less parallelizable simulators. However, suprisingly, it has maintained dominance even on tasks based on the highly parallelizable simulators of today. In this paper, we show that a different class of on-policy algorithms based on estimating the policy gradient using the critic-action gradients are better suited when using highly parallelizable simulators. The primary issues for these algorithms arise from the lack of diversity of the on-policy experiences used for the updates and the instabilities arising from the interaction between the biased critic gradients and the rapidly changing policy distribution. We address the former by simply increasing the number of parallel simulation runs (thanks to the GPU based simulators) along with an appropriate schedule on the policy entropy to ensure diversity of samples. We address the latter by adding a policy averaging step and value averaging step (as in off-policy methods). With these modifications, we observe that the critic gradient based on-policy method (CGAC) consistently achieves higher episode returns compared with existing baselines. Furthermore, in environments with high dimensional action space, CGAC also trains much faster (in wall-clock time) than the corresponding baselines.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Reinforcement learning with actor-critic for knowledge graph reasoning
    Linli Zhang
    Dewei Li
    Yugeng Xi
    Shuai Jia
    Science China Information Sciences, 2020, 63
  • [42] A Sandpile Model for Reliable Actor-Critic Reinforcement Learning
    Peng, Yiming
    Chen, Gang
    Zhang, Mengjie
    Pang, Shaoning
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 4014 - 4021
  • [43] Reinforcement learning with actor-critic for knowledge graph reasoning
    Linli ZHANG
    Dewei LI
    Yugeng XI
    Shuai JIA
    Science China(Information Sciences), 2020, 63 (06) : 223 - 225
  • [45] Actor Critic Deep Reinforcement Learning for Neural Malware Control
    Wang, Yu
    Stokes, Jack W.
    Marinescu, Mady
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 1005 - 1012
  • [46] Actor-Critic Reinforcement Learning for Tracking Control in Robotics
    Pane, Yudha P.
    Nageshrao, Subramanya P.
    Babuska, Robert
    2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 5819 - 5826
  • [47] Visual Navigation with Actor-Critic Deep Reinforcement Learning
    Shao, Kun
    Zhao, Dongbin
    Zhu, Yuanheng
    Zhang, Qichao
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [48] Reinforcement learning for a biped robot based on a CPG-actor-critic method
    Nakamura, Yutaka
    Mori, Takeshi
    Sato, Masa-Aki
    Ishii, Shin
    NEURAL NETWORKS, 2007, 20 (06) : 723 - 735
  • [49] Actor-Critic Reinforcement Learning for Control With Stability Guarantee
    Han, Minghao
    Zhang, Lixian
    Wang, Jun
    Pan, Wei
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04) : 6217 - 6224
  • [50] Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning
    Wu, Yue
    Zhai, Shuangfei
    Srivastava, Nitish
    Susskind, Joshua
    Zhang, Jian
    Salakhutdinov, Ruslan
    Goh, Hanlin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139