Message Passing Based Gaussian Mixture Model for DOA Estimation in Complex Noise Scenarios

被引:0
|
作者
Guan, Shanwen [1 ]
Lu, Xinhua [2 ]
Li, Ji [1 ]
Luo, Xiaonan [1 ]
机构
[1] Guilin Univ Elect Technol, Guangxi Key Lab Image & Graph Intelligent Proc, Guilin 541000, Peoples R China
[2] Nanyang Inst Technol, Sch Informat Engn, Nanyang 473000, Peoples R China
基金
中国国家自然科学基金;
关键词
Direction of arrival (DOA) estimation; factor graph; message passing algorithm; Gaussian mixture model; LOCALIZATION; ALGORITHM;
D O I
10.1109/LSP.2024.3386496
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Wireless signals are frequently disturbed by complex noise sources, presenting a challenge to traditional direction of arrival (DOA) estimation methods that rely on the assumption of Gaussian noise. To address this issue, this letter proposes an innovative Bayesian DOA estimation approach. This method utilizes Gaussian mixture model (GMM) and Dirichlet process prior to model the density function of complex noise in practical scenarios. Additionally, an efficient combined message passing algorithm is formulated on the factor graph through the use of generalized approximate message passing (GAMP) and mean field (MF) techniques. Simulation results validate the effectiveness of this algorithm.
引用
收藏
页码:1379 / 1383
页数:5
相关论文
共 50 条
  • [31] Vehicle ROI Extraction Based on Area Estimation Gaussian Mixture Model
    Huang, ZhaoNan
    Qin, HuaBiao
    Liu, Qing
    2017 3RD IEEE INTERNATIONAL CONFERENCE ON CYBERNETICS (CYBCONF), 2017, : 201 - 207
  • [32] PARAMETER ESTIMATION OF GAUSSIAN MIXTURE MODEL BASED ON VARIATIONAL BAYESIAN LEARNING
    Zhao, Linchang
    Shang, Zhaowei
    Qin, Anyong
    Tang, Yuan Yan
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 1, 2018, : 99 - 104
  • [33] Global Performance Estimation Based On Gaussian Mixture Model for Wind Turbines
    Wang, Wei
    Zhang, Menghang
    Guo, Shuangquan
    Li, Hui
    Lv, Wei
    Yang, Jiarong
    Liu, Zongchang
    APPLIED MECHANICS, MATERIALS AND MANUFACTURING IV, 2014, 670-671 : 1033 - 1036
  • [34] Robust image reconstruction enhancement based on Gaussian mixture model estimation
    Zhao, Fan
    Zhao, Jian
    Han, Xizhen
    Wang, He
    Liu, Bochao
    JOURNAL OF ELECTRONIC IMAGING, 2016, 25 (02)
  • [35] Nonlinear Discriminant Analysis Based on Probability Estimation by Gaussian Mixture Model
    Hidaka, Akinori
    Kurita, Takio
    STRUCTURAL, SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2014, 8621 : 133 - 142
  • [36] Estimation of Robot Motion State Based on Improved Gaussian Mixture Model
    Ge Q.-B.
    Wang H.-B.
    Yang Q.-M.
    Zhang X.-G.
    Liu H.-P.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (08): : 1972 - 1983
  • [37] 3rd-order cumulants-based DOA estimation in the presence of colored Gaussian noise
    Sharma, Umesh
    Agrawal, Monika
    2022 OCEANS HAMPTON ROADS, 2022,
  • [38] Underdetermined Wideband DOA Estimation Utilizing Noncircular Complex Gaussian Distribution
    Hu, Nan
    Wang, Tianyun
    Wei, Qiang
    Hu, Jianling
    IEEE SENSORS LETTERS, 2020, 4 (05)
  • [39] BAYES ESTIMATION IN A MIXTURE INVERSE GAUSSIAN MODEL
    GUPTA, RC
    AKMAN, HO
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1995, 47 (03) : 493 - 503
  • [40] Bayesian estimation of the Gaussian mixture GARCH model
    Concepcion Ausin, Maria
    Galeano, Pedro
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (05) : 2636 - 2652