Message Passing Based Gaussian Mixture Model for DOA Estimation in Complex Noise Scenarios

被引:0
|
作者
Guan, Shanwen [1 ]
Lu, Xinhua [2 ]
Li, Ji [1 ]
Luo, Xiaonan [1 ]
机构
[1] Guilin Univ Elect Technol, Guangxi Key Lab Image & Graph Intelligent Proc, Guilin 541000, Peoples R China
[2] Nanyang Inst Technol, Sch Informat Engn, Nanyang 473000, Peoples R China
基金
中国国家自然科学基金;
关键词
Direction of arrival (DOA) estimation; factor graph; message passing algorithm; Gaussian mixture model; LOCALIZATION; ALGORITHM;
D O I
10.1109/LSP.2024.3386496
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Wireless signals are frequently disturbed by complex noise sources, presenting a challenge to traditional direction of arrival (DOA) estimation methods that rely on the assumption of Gaussian noise. To address this issue, this letter proposes an innovative Bayesian DOA estimation approach. This method utilizes Gaussian mixture model (GMM) and Dirichlet process prior to model the density function of complex noise in practical scenarios. Additionally, an efficient combined message passing algorithm is formulated on the factor graph through the use of generalized approximate message passing (GAMP) and mean field (MF) techniques. Simulation results validate the effectiveness of this algorithm.
引用
收藏
页码:1379 / 1383
页数:5
相关论文
共 50 条
  • [1] Edge Learning via Message Passing: Distributed Estimation Framework Based on Gaussian Mixture Model
    Li, Xiang
    Yuan, Weijie
    Zhang, Kecheng
    Wu, Nan
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (21): : 34409 - 34419
  • [2] OTFS Detection Based on Gaussian Mixture Distribution: A Generalized Message Passing Approach
    Li, Xiang
    Yuan, Weijie
    IEEE COMMUNICATIONS LETTERS, 2024, 28 (01) : 178 - 182
  • [3] MESSAGE PASSING-BASED INFERENCE IN THE GAMMA MIXTURE MODEL
    Podusenko, Albert
    van Erp, Bart
    Bagaev, Dmitry
    Senoz, Ismail
    de Vries, Bert
    2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,
  • [4] Variational Bayesian Gaussian mixture model for off-grid DOA estimation
    Guan, Shanwen
    Li, Ji
    Luo, Xiaonan
    ELECTRONICS LETTERS, 2024, 60 (03)
  • [5] Gaussian Mixture Message Passing for Blind Known Interference Cancellation
    Wang, Taotao
    Shi, Long
    Zhang, Shengli
    Wang, Hui
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2019, 18 (09) : 4268 - 4282
  • [6] Fast DOA estimation method using generalized approximate message passing
    Zhang J.
    Zhang X.
    Jiang W.
    Liu Y.
    Li X.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2022, 44 (10): : 2995 - 3002
  • [7] An Approximate Message Passing Approach for DOA Estimation in Phase Noisy Environments
    Beaumont, Guillaume
    Fablet, Ronan
    Dremeau, Angelique
    LATENT VARIABLE ANALYSIS AND SIGNAL SEPARATION (LVA/ICA 2018), 2018, 10891 : 385 - 394
  • [8] Message Passing Based Block Sparse Signal Recovery for DOA Estimation Using Large Arrays
    Mao, Yiwen
    Gao, Dawei
    Guo, Qinghua
    Jin, Ming
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 1552 - 1556
  • [9] Estimation of signals in colored non gaussian noise based on Gaussian Mixture models
    Pradeepa, R.
    Anand, G. V.
    NSSPW: NONLINEAR STATISTICAL SIGNAL PROCESSING WORKSHOP: CLASSICAL, UNSCENTED AND PARTICLE FILTERING METHODS, 2006, : 17 - 20
  • [10] Gaussian mixture PHD filter based on noise covariance estimation
    Liang L.
    Jing Z.
    Dong P.
    Li M.
    Jing, Zhongliang (zljing@sjtu.edu.cn), 1600, Shanghai Jiaotong University (50): : 1355 - 1361