Correlation of microstructure, mechanical properties, and residual stress of 17-4 PH stainless steel fabricated by laser powder bed fusion

被引:7
|
作者
Moyle, M. S. [1 ]
Haghdadi, N. [1 ]
Luzin, V. [2 ,3 ]
Salvemini, F. [2 ]
Liao, X. Z. [4 ,5 ]
Ringer, S. P. [4 ,5 ]
Primig, S. [1 ]
机构
[1] UNSW Sydney, Sch Mat Sci & Engn, Sydney, NSW 2052, Australia
[2] Australian Nucl Sci & Technol Org ANSTO, Lucas Heights, NSW 2234, Australia
[3] Univ Newcastle, Sch Engn, Callaghan, NSW 2308, Australia
[4] Univ Sydney, Australian Ctr Microscopy & Microanal, Sydney, NSW 2006, Australia
[5] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
关键词
Additive Manufacturing; 17-4 PH stainless steel; Mechanical properties; Residual stress; HEAT-TREATMENT; FATIGUE BEHAVIOR; EVOLUTION; AUSTENITE; DIFFRACTION; DISTORTION; ALLOYS;
D O I
10.1016/j.jmst.2024.01.080
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
17-4 precipitation hardening (PH) stainless steel is a multi-purpose engineering alloy offering an excellent trade -off between strength, toughness, and corrosion properties. It is commonly employed in additive manufacturing via laser powder bed fusion owing to its good weldability. However, there are remaining gaps in the processing-structure-property relationships for AM 17-4 PH that need to be addressed. For instance, discrepancies in literature regarding the as-built microstructure, subsequent development of the matrix phase upon heat treatment, as well as the as-built residual stress should be addressed to enable reproducible printing of 17-4 builds with superior properties. As such, this work applies a comprehensive characterisation and testing approach to 17-4 PH builds fabricated with different processing parameters, both in the as-built state and after standard heat treatments. Tensile properties in as-built samples both along and normal to the build direction were benchmarked against standard wrought samples in the solution annealed and quenched condition (CA). When testing along the build direction, higher ductility was observed for samples produced with a higher laser power (energy density) due to the promotion of interlayer cohesion and, hence, reduction of interlayer defects. Following the CA heat treatment, the austenite volume fraction increased to similar to 35 %, resulting in a lower yield stress and greater work hardening capacity than the as-built specimens due to the transformation induced plasticity effect. Neutron diffraction revealed a slight reduction in the magnitude of residual stress with laser power. A concentric scanning strategy led to a higher magnitude of residual stress than a bidirectional raster pattern. (c) 2024 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
引用
收藏
页码:83 / 97
页数:15
相关论文
共 50 条
  • [31] Powder injection molding of a 17-4 PH stainless steel and the effect of sintering temperature on its microstructure and mechanical properties
    Sung, HJ
    Ha, TK
    Ahn, S
    Chang, YW
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2002, 130 : 321 - 327
  • [32] Effect of laser polishing on the microstructure and mechanical properties of stainless steel 316L fabricated by laser powder bed fusion
    Chen, Lan
    Richter, Brodan
    Zhang, Xinzhou
    Bertsch, Kaila B.
    Thoma, Dan J.
    Pfefferkorn, Frank E.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 802
  • [33] Effect of laser polishing on the microstructure and mechanical properties of stainless steel 316L fabricated by laser powder bed fusion
    Chen, Lan
    Richter, Brodan
    Zhang, Xinzhou
    Bertsch, Kaila B.
    Thoma, Dan J.
    Pfefferkorn, Frank E.
    Materials Science and Engineering: A, 2021, 802
  • [34] Study of powder recycling and its effect on printed parts during laser powder-bed fusion of 17-4 PH stainless steel
    Ahmed, Farid
    Ali, Usman
    Sarker, Dyuti
    Marzbanrad, Ehsan
    Choi, Kaylie
    Mahmoodkhani, Yahya
    Toyserkani, Ehsan
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2020, 278
  • [35] Formability, Microstructure and Mechanical Properties of Flow-Formed 17-4 PH Stainless Steel
    Maj, P.
    Adamczyk-Cieslak, B.
    Lewczuk, M.
    Mizera, J.
    Kut, S.
    Mrugala, T.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2018, 27 (12) : 6435 - 6442
  • [36] Crystallographic aspects of 17-4 PH martensitic steel produced by laser-powder bed fusion
    Vysotskiy, Igor
    Malopheyev, Sergey
    Zuiko, Ivan
    Mironov, Sergey
    Kaibyshev, Rustam
    MATERIALS CHARACTERIZATION, 2022, 194
  • [37] Normalizing Effect of Heat Treatment Processing on 17-4 PH Stainless Steel Manufactured by Powder Bed Fusion
    Yeon, Si-Mo
    Yoon, Jongcheon
    Kim, Tae Bum
    Lee, Seung Ho
    Jun, Tea-Sung
    Son, Yong
    Choi, Kyunsuk
    METALS, 2022, 12 (05)
  • [38] Crystallographic Aspects of 17-4 PH Martensitic Steel Produced by Laser-Powder Bed Fusion
    Mironov, Sergey
    Malopheyev, Sergey
    Zuiko, Ivan
    Kaibyshev, Rustam
    Vysotskiy, Igor
    SSRN, 2022,
  • [39] Crystallographic Aspects of 17-4 Ph Martensitic Steel Produced by Laser-Powder Bed Fusion
    Belgorod National Research University, Pobeda 85, Belgorod
    308015, Russia
    1600,
  • [40] Evidence of in-situ Cu clustering as a function of laser power during laser powder bed fusion of 17-4 PH stainless steel
    Moyle, M. S.
    Haghdadi, N.
    Davids, W. J.
    Liao, X. Z.
    Ringer, S. P.
    Primig, S.
    SCRIPTA MATERIALIA, 2022, 219