Simultaneous uniqueness for the diffusion coefficient and initial value identification in a time-fractional diffusion equation

被引:0
|
作者
Jing, Xiaohua [1 ]
Jia, Junxiong [2 ]
Song, Xueli [1 ]
机构
[1] Changan Univ, Sch Sci, Xian 710064, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional inverse problem; Simultaneous uniqueness; Inverse coefficient problem;
D O I
10.1016/j.aml.2024.109149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article investigates the uniqueness of simultaneously determining the diffusion coefficient and initial value in a time-fractional diffusion equation with derivative order alpha is an element of(0, 1). By additional boundary measurements and a priori assumption on the diffusion coefficient, the uniqueness of the eigenvalues and an associated integral equation for the diffusion coefficient are firstly established. The proof is based on the Laplace transform and the expansion of eigenfunctions for the solution to the initial value/boundary value problem. Furthermore, by using these two results, the simultaneous uniqueness in determining the diffusion coefficient and initial value is demonstrated from the Liouville transform and Gelfand-Levitan theory. The result shows that the uniqueness in simultaneous identification can be achieved, provided the initial values non-orthogonality to the eigenfunction of differential operators, which incorporates only one diffusion coefficient rather than scenarios involving two diffusion coefficients.
引用
收藏
页数:6
相关论文
共 50 条