Latent Multi-view Semi-Supervised Classification

被引:0
|
作者
Bo, Xiaofan [1 ]
Kang, Zhao [2 ]
Zhao, Zhitong [2 ]
Su, Yuanzhang [3 ]
Chen, Wenyu [2 ]
机构
[1] Univ Elect Sci & Technol China, Glasgow Coll, Chengdu, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Foreign Languages, Chengdu, Peoples R China
关键词
Semi-supervised classification; Multi-view learning; Latent space;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To explore underlying complementary information from multiple views, in this paper, we propose a novel Latent Multi-view Semi-Supervised Classification (LMSSC) method. Unlike most existing multi-view semi-supervised classification methods that learn the graph using original features, our method seeks an underlying latent representation and performs graph learning and label propagation based on the learned latent representation. With the complementarity of multiple views, the latent representation could depict the data more comprehensively than every single view individually, accordingly making the graph more accurate and robust as well. Finally, LMSSC integrates latent representation learning, graph construction, and label propagation into a unified framework, which makes each subtask optimized. Experimental results on real-world benchmark datasets validate the effectiveness of our proposed method.
引用
收藏
页码:348 / 362
页数:15
相关论文
共 50 条
  • [21] View Construction for Multi-view Semi-supervised Learning
    Sun, Shiliang
    Jin, Feng
    Tu, Wenting
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2011, PT I, 2011, 6675 : 595 - 601
  • [22] Multi-view classification with semi-supervised learning for SAR target recognition
    Zhang, Yukun
    Guo, Xiansheng
    Ren, Haohao
    Li, Lin
    [J]. SIGNAL PROCESSING, 2021, 183
  • [23] Scalable Multi-View Semi-Supervised Classification via Adaptive Regression
    Tao, Hong
    Hou, Chenping
    Nie, Feiping
    Zhu, Jubo
    Yi, Dongyun
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (09) : 4283 - 4296
  • [24] Semi-supervised classification of hyperspectral images based on multi-view consistency
    Liu, Bing
    Zuo, Xibing
    Yu, Anzhu
    Sun, Yifan
    Wang, Ruirui
    [J]. REMOTE SENSING LETTERS, 2023, 14 (05) : 479 - 490
  • [25] Multi-view Interaction Graph Convolutional Network for Semi-supervised Classification
    Wang, Yue-Tian
    Fu, Si-Chao
    Peng, Qin-Mu
    Zou, Bin
    Jing, Xiao-Yuan
    You, Xin-Ge
    [J]. Ruan Jian Xue Bao/Journal of Software, 2024, 35 (11): : 5098 - 5115
  • [26] A Semi-Supervised Multi-View Genetic Algorithm
    Lazarova, Gergana
    Koychev, Ivan
    [J]. 2014 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, MODELLING AND SIMULATION, 2014, : 87 - 91
  • [27] Semi-supervised multi-view concept decomposition
    Jiang, Qi
    Zhou, Guoxu
    Zhao, Qibin
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 241
  • [28] Semi-supervised Multi-view Sentiment Analysis
    Lazarova, Gergana
    Koychev, Ivan
    [J]. COMPUTATIONAL COLLECTIVE INTELLIGENCE (ICCCI 2015), PT I, 2015, 9329 : 181 - 190
  • [29] Semi-supervised Deep Multi-view Stereo
    Xu, Hongbin
    Chen, Weitao
    Liu, Yang
    Zhou, Zhipeng
    Xiao, Haihong
    Sun, Baigui
    Xie, Xuansong
    Kang, Wenxiong
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 4616 - 4625
  • [30] Semi-Supervised and Self-Supervised Classification with Multi-View Graph Neural Networks
    Yuan, Jinliang
    Yu, Hualei
    Cao, Meng
    Xu, Ming
    Xie, Junyuan
    Wang, Chongjun
    [J]. PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 2466 - 2476