Semi-TSGAN: Semi-Supervised Learning for Highlight Removal Based on Teacher-Student Generative Adversarial Network

被引:0
|
作者
Zheng, Yuanfeng [1 ]
Yan, Yuchen [1 ]
Jiang, Hao [1 ]
机构
[1] Wuhan Univ, Sch Elect Informat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
semi-supervised learning; highlight removal; generative adversarial network; REFLECTION; SEPARATION;
D O I
10.3390/s24103090
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Despite recent notable advancements in highlight image restoration techniques, the dearth of annotated data and the lightweight deployment of highlight removal networks pose significant impediments to further advancements in the field. In this paper, to the best of our knowledge, we first propose a semi-supervised learning paradigm for highlight removal, merging the fusion version of a teacher-student model and a generative adversarial network, featuring a lightweight network architecture. Initially, we establish a dependable repository to house optimal predictions as pseudo ground truth through empirical analyses guided by the most reliable No-Reference Image Quality Assessment (NR-IQA) method. This method serves to assess rigorously the quality of model predictions. Subsequently, addressing concerns regarding confirmation bias, we integrate contrastive regularization into the framework to curtail the risk of overfitting on inaccurate labels. Finally, we introduce a comprehensive feature aggregation module and an extensive attention mechanism within the generative network, considering a balance between network performance and computational efficiency. Our experimental evaluations encompass comprehensive assessments on both full-reference and non-reference highlight benchmarks. The results demonstrate conclusively the substantive quantitative and qualitative enhancements achieved by our proposed algorithm in comparison to state-of-the-art methodologies.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Semi-Supervised Generative Adversarial Network for Gene Expression Inference
    Dizaji, Kamran Ghasedi
    Wang, Xiaoqian
    Huang, Heng
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 1435 - 1444
  • [22] Generative Adversarial Network-Based Electromagnetic Signal Classification: A Semi-Supervised Learning Framework
    Huaji Zhou
    Licheng Jiao
    Shilian Zheng
    Lifeng Yang
    Weiguo Shen
    Xiaoniu Yang
    China Communications, 2020, 17 (10) : 157 - 169
  • [23] Generative Adversarial Network-Based Electromagnetic Signal Classification: A Semi-Supervised Learning Framework
    Zhou, Huaji
    Jiao, Licheng
    Zheng, Shilian
    Yang, Lifeng
    Shen, Weiguo
    Yang, Xiaoniu
    CHINA COMMUNICATIONS, 2020, 17 (10) : 157 - 169
  • [24] GENERATIVE ADVERSARIAL SEMI-SUPERVISED NETWORK FOR MEDICAL IMAGE SEGMENTATION
    Li, Chuchen
    Liu, Huafeng
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 303 - 306
  • [25] SVGAN: Semi-supervised Generative Adversarial Network for Image Captioning
    Zhang, Yi
    Zeng, Wei
    He, Gangqiang
    Liu, Yueyuan
    2020 IEEE CONFERENCE ON TELECOMMUNICATIONS, OPTICS AND COMPUTER SCIENCE (TOCS), 2020, : 296 - 299
  • [26] Medical image segmentation with generative adversarial semi-supervised network
    Li, Chuchen
    Liu, Huafeng
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (24):
  • [27] Optimization of semi-supervised generative adversarial network models: a survey
    Ma, Yongqing
    Zheng, Yifeng
    Zhang, Wenjie
    Wei, Baoya
    Lin, Ziqiong
    Liu, Weiqiang
    Li, Zhehan
    INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING AND CYBERNETICS, 2024, : 705 - 736
  • [28] Semi-Supervised Learning for Optical Flow with Generative Adversarial Networks
    Lai, Wei-Sheng
    Huang, Jia-Bin
    Yang, Ming-Hsuan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [29] Survey on Implementations of Generative Adversarial Networks for Semi-Supervised Learning
    Sajun, Ali Reza
    Zualkernan, Imran
    APPLIED SCIENCES-BASEL, 2022, 12 (03):
  • [30] Attention-Based Generative Adversarial Network for Semi-supervised Image Classification
    Xuezhi Xiang
    Zeting Yu
    Ning Lv
    Xiangdong Kong
    Abdulmotaleb El Saddik
    Neural Processing Letters, 2020, 51 : 1527 - 1540