Semi-TSGAN: Semi-Supervised Learning for Highlight Removal Based on Teacher-Student Generative Adversarial Network

被引:0
|
作者
Zheng, Yuanfeng [1 ]
Yan, Yuchen [1 ]
Jiang, Hao [1 ]
机构
[1] Wuhan Univ, Sch Elect Informat, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
semi-supervised learning; highlight removal; generative adversarial network; REFLECTION; SEPARATION;
D O I
10.3390/s24103090
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Despite recent notable advancements in highlight image restoration techniques, the dearth of annotated data and the lightweight deployment of highlight removal networks pose significant impediments to further advancements in the field. In this paper, to the best of our knowledge, we first propose a semi-supervised learning paradigm for highlight removal, merging the fusion version of a teacher-student model and a generative adversarial network, featuring a lightweight network architecture. Initially, we establish a dependable repository to house optimal predictions as pseudo ground truth through empirical analyses guided by the most reliable No-Reference Image Quality Assessment (NR-IQA) method. This method serves to assess rigorously the quality of model predictions. Subsequently, addressing concerns regarding confirmation bias, we integrate contrastive regularization into the framework to curtail the risk of overfitting on inaccurate labels. Finally, we introduce a comprehensive feature aggregation module and an extensive attention mechanism within the generative network, considering a balance between network performance and computational efficiency. Our experimental evaluations encompass comprehensive assessments on both full-reference and non-reference highlight benchmarks. The results demonstrate conclusively the substantive quantitative and qualitative enhancements achieved by our proposed algorithm in comparison to state-of-the-art methodologies.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Pairwise Teacher-Student Network for Semi-Supervised Hashing
    Zhang, Shifeng
    Li, Jianmin
    Zhang, Bo
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 730 - 737
  • [2] A semi-supervised fault diagnosis model based on a teacher-student network
    Gao Y.
    Fu Z.
    Xie Y.
    Wang S.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (04): : 150 - 157
  • [3] Generative Adversarial Training for Supervised and Semi-supervised Learning
    Wang, Xianmin
    Li, Jing
    Liu, Qi
    Zhao, Wenpeng
    Li, Zuoyong
    Wang, Wenhao
    FRONTIERS IN NEUROROBOTICS, 2021, 15
  • [4] Semi-MoreGAN: Semi-supervised Generative Adversarial Network for Mixture of Rain Removal
    Shen, Yiyang
    Wang, Yongzhen
    Wei, Mingqiang
    Chen, Honghua
    Xie, Haoran
    Cheng, Gary
    Wang, Fu Lee
    COMPUTER GRAPHICS FORUM, 2022, 41 (07) : 443 - 454
  • [5] Semi-supervised teacher-student architecture for relation extraction
    Luo, Fan
    Nagesh, Ajay
    Sharp, Rebecca
    Surdeanu, Mihai
    NLP@NAACL-HLT 2019 - 3rd Workshop on Structured Prediction for NLP, Proceedings, 2021, : 29 - 37
  • [6] Generative adversarial network for semi-supervised image captioning
    Liang, Xu
    Li, Chen
    Tian, Lihua
    Computer Vision and Image Understanding, 2024, 249
  • [7] Semi-Supervised Learning Based on Generative Adversarial Network and Its Applied to Lithology Recognition
    Li, Guohe
    Qiao, Yinghan
    Zheng, Yifeng
    Li, Ying
    Wu, Weijiang
    IEEE ACCESS, 2019, 7 : 67428 - 67437
  • [8] Transfer Learning-Based Semi-Supervised Generative Adversarial Network for Malaria Classification
    Amin, Ibrar
    Hassan, Saima
    Belhaouari, Samir Brahim
    Azam, Muhammad Hamza
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (03): : 6335 - 6349
  • [9] Semi-Supervised Learning with Coevolutionary Generative Adversarial Networks
    Toutouh, Jamal
    Nalluru, Subhash
    Hemberg, Erik
    O'Reilly, Una-May
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2023, 2023, : 568 - 576
  • [10] Semi-supervised Learning on Graphs with Generative Adversarial Nets
    Ding, Ming
    Tang, Jie
    Zhang, Jie
    CIKM'18: PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2018, : 913 - 922