Criticality in Sperner's Lemma

被引:0
|
作者
Kaiser, Tomas [1 ,2 ]
Stehlik, Matej [3 ]
Skrekovski, Riste [4 ,5 ]
机构
[1] Univ West Bohemia, Ctr Excellence NTIS New Technol Informat Soc, Plzen, Czech Republic
[2] Univ West Bohemia, European Ctr Excellence NTIS New Technol Informat, Plzen, Czech Republic
[3] Univ Paris Cite, CNRS, IRIF, F-75006 Paris, France
[4] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[5] Fac Informat Studies, Novo Mesto 8000, Slovenia
关键词
GRAPHS;
D O I
10.1007/s00493-024-00104-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We answer a question posed by Gallai in 1969 concerning criticality in Sperner's lemma, listed as Problem 9.14 in the collection of Jensen and Toft (Graph coloring problems, Wiley, New York, 1995). Sperner's lemma states that if a labelling of the vertices of a triangulation of the d-simplex Delta d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta <^>d$$\end{document} with labels 1,2,& mldr;,d+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1, 2, \ldots , d+1$$\end{document} has the property that (i) each vertex of Delta d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta <^>d$$\end{document} receives a distinct label, and (ii) any vertex lying in a face of Delta d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta <^>d$$\end{document} has the same label as one of the vertices of that face, then there exists a rainbow facet (a facet whose vertices have pairwise distinct labels). For d <= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le 2$$\end{document}, it is not difficult to show that for every facet sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, there exists a labelling with the above properties where sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} is the unique rainbow facet. For every d >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document}, however, we construct an infinite family of examples where this is not the case, which implies the answer to Gallai's question as a corollary. The construction is based on the properties of a 4-polytope which had been used earlier to disprove a claim of Motzkin on neighbourly polytopes.
引用
收藏
页码:1041 / 1051
页数:11
相关论文
共 50 条
  • [31] TOPOLOGICAL-DEGREE AND THE SPERNER LEMMA
    LEVAN, C
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1982, 37 (03) : 371 - 377
  • [32] ON THE TWO-DIMENSIONAL VERSION OF THE SPERNER LEMMA AND BROUWER'S THEOREM
    Barcz, Eugeniusz
    ANNALES MATHEMATICAE SILESIANAE, 2022, 36 (02) : 106 - 114
  • [33] A Borsuk-Ulam Equivalent that Directly Implies Sperner's Lemma
    Nyman, Kathryn L.
    Su, Francis Edward
    AMERICAN MATHEMATICAL MONTHLY, 2013, 120 (04): : 346 - 354
  • [34] PROJECTIONS OF OCTAHEDRAL n-SPHERES AND MULTISCALE SPERNER'S LEMMA
    Lee, Shyh-Nan
    Chen, Kai-Hui
    Shih, Mau-Hsiang
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2018, 19 (02) : 297 - 312
  • [35] Nontrivial solutions of a nonlinear heat flow problem via Sperner's Lemma
    Palamides, P. K.
    Infante, G.
    Pietramala, P.
    APPLIED MATHEMATICS LETTERS, 2009, 22 (09) : 1444 - 1450
  • [36] Sperner's lemma and zero point theorems on a discrete simplex and a discrete simplotope
    Iimura, Takuya
    Murota, Kazuo
    Tamura, Akihisa
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (4-5) : 588 - 592
  • [37] Generalized Sperner lemma and subdivisions into simplices of equal volume
    Bekker B.M.
    Netsvetaev N.Yu.
    Journal of Mathematical Sciences, 1998, 91 (6) : 3492 - 3498
  • [38] GENERALIZING SPERNER'S LEMMA TO A FREE MODULE OVER A SPECIAL PRINCIPAL IDEAL RING
    Bullington, Grady D.
    JOURNAL OF COMMUTATIVE ALGEBRA, 2012, 4 (03) : 345 - 368
  • [39] Envy-Free Allocation by Sperner's Lemma Adapted to Rotation Shifts in a Company
    Lantaron, Sagrario
    Lopez, Marilo
    Merchan, Susana
    Rodrigo, Javier
    Rodriguez, Jose Samuel
    MATHEMATICS, 2021, 9 (09)
  • [40] Equivalence Between An Approximate Version Of Brouwer's Fixed Point Theorem And Sperner's Lemma: A Constructive Analysis
    Tanaka, Yasuhito
    APPLIED MATHEMATICS E-NOTES, 2011, 11 : 238 - 243