Criticality in Sperner's Lemma

被引:0
|
作者
Kaiser, Tomas [1 ,2 ]
Stehlik, Matej [3 ]
Skrekovski, Riste [4 ,5 ]
机构
[1] Univ West Bohemia, Ctr Excellence NTIS New Technol Informat Soc, Plzen, Czech Republic
[2] Univ West Bohemia, European Ctr Excellence NTIS New Technol Informat, Plzen, Czech Republic
[3] Univ Paris Cite, CNRS, IRIF, F-75006 Paris, France
[4] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
[5] Fac Informat Studies, Novo Mesto 8000, Slovenia
关键词
GRAPHS;
D O I
10.1007/s00493-024-00104-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We answer a question posed by Gallai in 1969 concerning criticality in Sperner's lemma, listed as Problem 9.14 in the collection of Jensen and Toft (Graph coloring problems, Wiley, New York, 1995). Sperner's lemma states that if a labelling of the vertices of a triangulation of the d-simplex Delta d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta <^>d$$\end{document} with labels 1,2,& mldr;,d+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1, 2, \ldots , d+1$$\end{document} has the property that (i) each vertex of Delta d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta <^>d$$\end{document} receives a distinct label, and (ii) any vertex lying in a face of Delta d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta <^>d$$\end{document} has the same label as one of the vertices of that face, then there exists a rainbow facet (a facet whose vertices have pairwise distinct labels). For d <= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\le 2$$\end{document}, it is not difficult to show that for every facet sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}, there exists a labelling with the above properties where sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} is the unique rainbow facet. For every d >= 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 3$$\end{document}, however, we construct an infinite family of examples where this is not the case, which implies the answer to Gallai's question as a corollary. The construction is based on the properties of a 4-polytope which had been used earlier to disprove a claim of Motzkin on neighbourly polytopes.
引用
收藏
页码:1041 / 1051
页数:11
相关论文
共 50 条
  • [1] Sperner's Lemma
    Pak, Karol
    FORMALIZED MATHEMATICS, 2010, 18 (04): : 180 - 187
  • [2] Sperner's lemma and robust machines
    P. Crescenzi
    R. Silvestri
    computational complexity, 1998, 7 : 163 - 173
  • [3] A note on kernels and Sperner's Lemma
    Kiraly, Tamas
    Pap, Julia
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (15) : 3327 - 3331
  • [4] An infinitary version of Sperner's Lemma
    Hohti, Aarno
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2006, 47 (03): : 503 - 514
  • [5] Sperner's lemma and robust machines
    Crescenzi, P
    Silvestri, R
    COMPUTATIONAL COMPLEXITY, 1998, 7 (02) : 163 - 173
  • [6] A polytopal generalization of Sperner's lemma
    De Loera, JA
    Peterson, E
    Su, FE
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2002, 100 (01) : 1 - 26
  • [7] The Sperner lemma
    Bidard, C
    RAIRO-RECHERCHE OPERATIONNELLE-OPERATIONS RESEARCH, 1998, 32 (02): : 193 - 210
  • [8] Using volume to prove Sperner's Lemma
    McLennan, Andrew
    Tourky, Rabee
    ECONOMIC THEORY, 2008, 35 (03) : 593 - 597
  • [9] Extensions of Sperner and Tucker's lemma for manifolds
    Musin, Oleg R.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2015, 132 : 172 - 187
  • [10] A Tree Sperner Lemma
    Niedermaier, Andrew
    Rizzolo, Douglas
    Su, Francis Edward
    DISCRETE GEOMETRY AND ALGEBRAIC COMBINATORICS, 2014, 625 : 77 - 92