Experimental study on suppression of thermal runaway propagation of lithium-ion battery by salt hydrate based dry powder extinguishants

被引:2
|
作者
Li, Xiutao [1 ]
Zhu, Yuxian [2 ]
Du, Kang [2 ]
Zhou, Xiaomeng [1 ]
机构
[1] Civil Aviat Univ China, Key Lab Civil Aviat Thermal Hazards Prevent & Emer, Tianjin 300300, Peoples R China
[2] Civil Aviat Univ China, Coll Safety Sci & Engn, Tianjin 300300, Peoples R China
基金
中国国家自然科学基金;
关键词
Salt hydrate; Lithium-ion battery; Thermal runaway; Fire suppression; Phase change; LATENT-HEAT; ELECTRIC VEHICLES; FIRE SUPPRESSION; FLAME-RETARDANT; ENERGY STORAGE; DEHYDRATION; DODECAFLUORO-2-METHYLPENTAN-3-ONE; PHOSPHORUS; EFFICIENCY; NITROGEN;
D O I
10.1016/j.csite.2024.104629
中图分类号
O414.1 [热力学];
学科分类号
摘要
To develop the high cooling effect, high fire extinguishing performance, non-conductive and low cost extinguishant for fighting lithium -ion battery (LIB) fire, seven salt hydrates with different amounts of crystal water were systematically studied as the dry powder extinguishants in this work. The results of the differential scanning calorimeter (DSC) measurement demonstrate that the highest endothermic enthalpies of the salt hydrates below 150 degrees C is larger than 800 kJ kg -1 , which can effectively suppress the thermal runaway (TR) propagation between LIBs. Moreover, the heat absorption capacity of the salt hydrate can be enhanced by increasing the reaction entropy, which can be achieved by increasing the crystal water content. The electric breakdown voltages of the salt hydrates were ranged from 4 kV to 60 kV, which are mainly determined by the crystal water content and the melting point. Furthermore, the fire extinguishing performances of the salt hydrates have no obvious relationship with their heat absorption capacities, but are related to their chemical component. This work systematically studied the factors that affect the cooling effect, the fire extinguishing performance and the conductivity of the salt hydrates, which provides an essential basis for developing high performance salt hydrate based dry powder extinguishants in fighting LIB fire.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Experimental investigation on suppression of thermal runaway propagation of lithium-ion battery by intermittent spray
    Zhang, Lin
    Duan, Qiangling
    Xu, Jiajia
    Meng, Xiangdong
    Sun, Jinhua
    Wang, Qingsong
    JOURNAL OF ENERGY STORAGE, 2023, 58
  • [2] Experimental Analysis of Thermal Runaway and Propagation in Lithium-Ion Battery Modules
    Lopez, Carlos F.
    Jeevarajan, Judith A.
    Mukherjee, Partha P.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (09) : A1905 - A1915
  • [3] Experimental study of thermal runaway propagation suppression of lithium-ion battery module in electric vehicle power packs
    Wang, Ziyang
    He, Chunshan
    Geng, Zhaojie
    Li, Guangchao
    Zhang, Yongyue
    Shi, Xiaolong
    Yao, Bin
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 182 : 692 - 702
  • [4] Experimental Study on the Efficiency of Hydrogel on Suppressing Thermal Runaway Propagation of Lithium-Ion Battery
    Liu, Chunyuan
    Zhang, Guowei
    Yuan, Diping
    Jiang, Liming
    Fan, Yafei
    Kong, Depeng
    FIRE TECHNOLOGY, 2024,
  • [5] An Experimental Study on the Thermal Runaway Propagation of Cycling Aged Lithium-Ion Battery Modules
    Han, Zhuxin
    Zhao, Luyao
    Zhao, Jiajun
    Xu, Guo
    Liu, Hong
    Chen, Mingyi
    FIRE-SWITZERLAND, 2024, 7 (04):
  • [6] Experimental Investigation on Thermal Runaway Propagation in Lithium-Ion Battery Cell Stack
    Hoelle, Sebastian
    Haberl, Simon
    Rheinfeld, Alexander
    Osswald, Patrick
    Zimmermann, Sascha
    Hinrichsen, Olaf
    2022 IEEE/AIAA TRANSPORTATION ELECTRIFICATION CONFERENCE AND ELECTRIC AIRCRAFT TECHNOLOGIES SYMPOSIUM (ITEC+EATS 2022), 2022, : 1174 - 1179
  • [7] Mitigation of lithium-ion battery thermal runaway and inhibition of thermal runaway propagation using inorganic salt hydrate with integrated latent heat and thermochemical storage
    Lin, Shao
    Ling, Ziye
    Li, Suimin
    Cai, Chuyue
    Zhang, Zhengguo
    Fang, Xiaoming
    ENERGY, 2023, 266
  • [8] Experimental Study on the Mechanism of Thermal Runaway Propagation in Lithium-ion Battery Pack for Electric Vehicles
    Jiang F.
    Zhang F.
    Xu C.
    Li C.
    Wang S.
    Ren Y.
    Feng X.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2021, 57 (14): : 23 - 31
  • [9] Modeling the propagation of internal thermal runaway in lithium-ion battery
    Zhang, Yue
    Song, Laifeng
    Tian, Jiamin
    Mei, Wenxin
    Jiang, Lihua
    Sun, Jinhua
    Wang, Qingsong
    APPLIED ENERGY, 2024, 362
  • [10] Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery
    Liu, Jingjing
    Wang, Zhirong
    Gong, Junhui
    Liu, Kai
    Wang, Hao
    Guo, Linsheng
    MATERIALS, 2017, 10 (03):