Forage peanut legume as a strategy for improving beef production without increasing livestock greenhouse gas emissions

被引:0
|
作者
Homem, B. G. C. [1 ,2 ]
Borges, L. P. C. [1 ]
de Lima, I. B. G. [1 ]
Guimaraes, B. C. [1 ]
Spasiani, P. P. [1 ]
Ferreira, I. M. [1 ]
Meo-Filho, P. [3 ]
Berndt, A. [3 ]
Alves, B. J. R. [2 ]
Urquiaga, S. [2 ]
Boddey, R. M. [4 ]
Casagrande, D. R. [1 ,5 ]
机构
[1] Univ Fed Lavras, Dept Anim Sci, UFLA, BR-37200900 Lavras, MG, Brazil
[2] Embrapa Agrobiol, Rodovia BR 465,Km 7, BR-23897970 Rio De Janeiro, Brazil
[3] Embrapa Southeast Livestock, Rodovia Washington Luiz,Km 234, BR-13560970 Sao Carlos, SP, Brazil
[4] Univ Fed Rural Rio de Janeiro, Dept Soil Sci, Rodovia BR 465,Km 7, BR-23890000 Seropedica, RJ, Brazil
[5] Univ Fed Lavras, Dept Anim Sci, Campus Univ,Caixa Postal 3037, BR-37200900 Lavras, MG, Brazil
关键词
Arachis pintoi; Forage legumes; Methane; Nitrogen fertiliser; Nitrous oxide; TILLER AGE CATEGORIES; METHANE EMISSIONS; NITROGEN-FERTILIZATION; CHEMICAL-COMPOSITION; ENTERIC METHANE; NUTRITIVE-VALUE; GRASS; DIGESTIBILITY; MANAGEMENT; HERBAGE;
D O I
10.1016/j.animal.2024.101158
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
The transformation of pastures from a degraded state to sustainable productivity is a major challenge in tropical livestock production. Stoloniferous forage legumes such as Arachis pintoi (forage peanut) are one of the most promising alternatives for intensifying pasture-based beef livestock operations with reduced greenhouse gas (GHG) emissions. This 2-year study assessed beef cattle performance, nutrient intake and digestibility, and balance of GHG emissions in three pasture types (PT): (1) mixed Palisade grass Urochloa brizantha (Hochst. ex A. Rich.) R.D. Webster (syn. Brachiaria brizantha Stapf cv. Marandu) and forage peanut (A. pintoi Krapov. & W.C. Greg. cv. BRS Mandobi) pastures (Mixed), (2) monoculture Palisade grass pastures with 150 kg of N/ha per year (Fertilised), and (3) monoculture Palisade grass without N fertiliser (Control). Continuous stocking with a variable stocking rate was used in a randomised complete block design, with four replicates per treatment. The average daily gain and carcass gain were not influenced by the PT (P = 0.439 and P = 0.100, respectively) and were, on average, 0.433 kg/animal per day and 83.4 kg/animal, respectively. Fertilised and Mixed pastures increased by 102 and 31.5%, respectively, the liveweight gain per area (kg/ha/yr) compared to the Control pasture (P < 0.001). The heifers in the Mixed pasture had lower CH4 emissions (g/animal per day; P = 0.009), achieving a reduction of 12.6 and 10.1% when compared to the Fertilised and Control pastures, respectively. Annual (N2O) emissions (g/animal) and per kg carcass weight gain were 59.8 and 63.1% lower, respectively, in the Mixed pasture compared to the Fertilised pasture (P < 0.001). Mixed pasture mitigated approximately 23% of kg CO2eq/ kg of carcass when substituting 150 kg of N/ha per year via fertiliser. Mixed pastures with forage peanut are a promising solution to recover degraded tropical pastures by providing increased animal production with lower GHG emissions. (c) 2024 The Author(s). Published by Elsevier B.V. on behalf of The Animal Consortium.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Improving production efficiency as a strategy to mitigate greenhouse gas emissions on pastoral dairy farms in New Zealand
    Beukes, P. C.
    Gregorini, P.
    Romera, A. J.
    Levy, G.
    Waghorn, G. C.
    [J]. AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2010, 136 (3-4) : 358 - 365
  • [22] Greenhouse gas emissions from coupled dairy-beef production in Switzerland
    Probst, Stefan
    Wasem, Daniela
    Kobe, Desiree
    Zehetmeier, Monika
    Flury, Christine
    [J]. AGRARFORSCHUNG SCHWEIZ, 2019, 10 (11-12): : 440 - 445
  • [23] Estimation of Energy Consumption and Greenhouse Gas Emissions of Transportation in Beef Cattle Production
    Kannan, Narayanan
    Saleh, Ali
    Osei, Edward
    [J]. ENERGIES, 2016, 9 (11)
  • [24] Economics of mitigating greenhouse gas emissions from beef production in western Canada
    Modongo, Oteng
    Kulshreshtha, Suren N.
    [J]. AGRICULTURAL SYSTEMS, 2018, 162 : 229 - 238
  • [25] Impact of the intensification of beef production in Brazil on greenhouse gas emissions and land use
    Cardoso, Abmael S.
    Berndt, Alexandre
    Leytem, April
    Alves, Bruno J. R.
    de Carvalho, Isabel das N. O.
    de Barros Soares, Luis Henrique
    Urquiaga, Segundo
    Boddey, Robert M.
    [J]. AGRICULTURAL SYSTEMS, 2016, 143 : 86 - 96
  • [26] Greenhouse gas emissions from fen soils used for forage production in northern Germany
    Poyda, Arne
    Reinsch, Thorsten
    Kluss, Christof
    Loges, Ralf
    Taube, Friedhelm
    [J]. BIOGEOSCIENCES, 2016, 13 (18) : 5221 - 5244
  • [27] Reducing greenhouse gas emissions of New Zealand beef through better integration of dairy and beef production
    van Selm, Benjamin
    de Boer, Imke J. M.
    Ledgard, Stewart F.
    van Middelaar, Corina E.
    [J]. AGRICULTURAL SYSTEMS, 2021, 186
  • [28] Localising livestock protein feed production and the impact on land use and greenhouse gas emissions
    Sasu-Boakye, Y.
    Cederberg, C.
    Wirsenius, S.
    [J]. ANIMAL, 2014, 8 (08) : 1339 - 1348
  • [29] Mitigating Greenhouse Gas Emissions from Crop Production and Management Practices, and Livestock: A Review
    Kabange, Nkulu Rolly
    Kwon, Youngho
    Lee, So-Myeong
    Kang, Ju-Won
    Cha, Jin-Kyung
    Park, Hyeonjin
    Dzorkpe, Gamenyah Daniel
    Shin, Dongjin
    Oh, Ki-Won
    Lee, Jong-Hee
    [J]. SUSTAINABILITY, 2023, 15 (22)
  • [30] Integrating livestock production with crops and saline fish ponds to reduce greenhouse gas emissions
    Ogburn, Damian M.
    White, Ian
    [J]. JOURNAL OF INTEGRATIVE ENVIRONMENTAL SCIENCES, 2011, 8 (01) : 39 - 52