P-doped spherical hard carbon with high initial coulombic efficiency and enhanced capacity for sodium ion batteries

被引:0
|
作者
Liu, Zheng-Guang [1 ]
Zhao, Jiahua [1 ,2 ]
Yao, Hao [1 ,2 ]
He, Xiang-Xi [1 ,2 ]
Zhang, Hang [1 ,2 ]
Qiao, Yun [1 ]
Wu, Xing-Qiao [2 ]
Li, Li [1 ,3 ]
Chou, Shu-Lei [2 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Shanghai, Peoples R China
[2] Wenzhou Univ, Inst Carbon Neutralizat Technol, Coll Chem & Mat Engn, Wenzhou 325035, Zhejiang, Peoples R China
[3] Nankai Univ, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1039/d4sc01395f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hard carbon (HC) is one of the most promising anode materials for sodium-ion batteries (SIBs) due to its cost-effectiveness and low-voltage plateau capacity. Heteroatom doping is considered as an effective strategy to improve the sodium storage capacity of HC. However, most of the previous heteroatom doping strategies are performed at a relatively low temperature, which could not be utilized to raise the low-voltage plateau capacity. Moreover, extra doping of heteroatoms could create new defects, leading to a low initial coulombic efficiency (ICE). Herein, we propose a repair strategy based on doping a trace amount of P to achieve a high capacity along with a high ICE. By employing the cross-linked interaction between glucose and phytic acid to achieve the in situ P doped spherical hard carbon, the obtained PHC-0.2 possesses a large interlayer space that facilitates Na+ storage and transportation. In addition, doping a suitable amount of P could repair some defects in carbon layers. When used as an anode material for SIBs, the PHC-0.2 exhibits an enhanced reversible capacity of 343 mA h g-1 at 20 mA g-1 with a high ICE of 92%. Full cells consisting of a PHC-0.2 anode and a Na2Fe0.5Mn0.5[Fe(CN)6] cathode exhibited an average potential of 3.1 V with an initial discharge capacity of 255 mA h g-1 and an ICE of 85%. The full cell displays excellent cycling stability with a capacity retention of 80.3% after 170 cycles. This method is simple and low-cost, which can be extended to other energy storage materials. We propose a repair strategy based on doping a trace amount of P to achieve a high capacity along with a high ICE, the obtained PHC-0.2 possesses a large interlayer space that facilitates Na+ storage and transportation.
引用
收藏
页码:8478 / 8487
页数:10
相关论文
共 50 条
  • [11] Hierarchically porous hard carbon with graphite nanocrystals for high-rate sodium ion batteries with improved initial Coulombic efficiency
    Li, Tao
    Liu, Zhanqiang
    Gu, Yanjing
    Tang, Yufeng
    Huang, Fuqiang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 817
  • [12] Boost sodium-ion batteries to commercialization: Strategies to enhance initial Coulombic efficiency of hard carbon anode
    Zhang, Minghao
    Li, Yu
    Wu, Feng
    Bai, Ying
    Wu, Chuan
    NANO ENERGY, 2021, 82
  • [13] Molecular Engineering Enabling High Initial Coulombic Efficiency and Rubost Solid Electrolyte Interphase for Hard Carbon in Sodium-Ion Batteries
    Sun, Yu
    Hou, Ruilin
    Xu, Sheng
    Zhou, Haoshen
    Guo, Shaohua
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (11)
  • [14] Catalytic Defect-Repairing Using Manganese Ions for Hard Carbon Anode with High-Capacity and High-Initial-Coulombic-Efficiency in Sodium-Ion Batteries
    Zhao, Jiahua
    He, Xiang-Xi
    Lai, Wei-Hong
    Yang, Zhuo
    Liu, Xiao-Hao
    Li, Lin
    Qiao, Yun
    Xiao, Yao
    Li, Li
    Wu, Xingqiao
    Chou, Shu-Lei
    ADVANCED ENERGY MATERIALS, 2023, 13 (18)
  • [15] Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries
    He, Hanna
    Sun, Dan
    Tang, Yougen
    Wang, Haiyan
    Shao, Minhua
    ENERGY STORAGE MATERIALS, 2019, 23 : 233 - 251
  • [16] Progress in hard carbons for sodium-ion batteries: Microstructure, sodium storage mechanism and initial Coulombic efficiency
    Li, Xinwei
    Ding, Changsheng
    Liang, Qianqian
    Hu, Jiawen
    Xu, Li
    Li, Yongfeng
    Liu, Yu
    Gao, Yanfeng
    JOURNAL OF ENERGY STORAGE, 2024, 98
  • [17] Hard carbon derived from hazelnut shell with facile HCl treatment as high-initial-coulombic-efficiency anode for sodium ion batteries
    Wang, Jiacheng
    Zhao, Jiahua
    He, Xiangxi
    Qiao, Yun
    Li, Li
    Chou, Shu-Lei
    SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2022, 33
  • [18] Engineering hard carbon with high initial coulomb efficiency for practical sodium-ion batteries
    Yang, Bin
    Wang, Jin
    Zhu, Youyu
    Ji, Kemeng
    Wang, Chengyang
    Ruan, Dianbo
    Xia, Yongyao
    JOURNAL OF POWER SOURCES, 2021, 492
  • [19] Biomass-derived hard carbon anodes: An overview on strategies of improving initial Coulombic efficiency for sodium-ion batteries
    Liu, Luqiong
    Xu, Fenghua
    Zou, Anbang
    Yu, Zhengzheng
    Jiang, Jiaxin
    Yin, Shuangfeng
    Weng, Baicheng
    MATERIALS TODAY COMMUNICATIONS, 2024, 41
  • [20] Catalyzing carbon surface by Ni to improve initial coulombic efficiency of sodium-ion batteries
    Wang, Caiwei
    Huang, Jianfeng
    Li, Qianying
    Cao, Liyun
    Li, Jiayin
    Kajiyoshi, Koji
    JOURNAL OF ENERGY STORAGE, 2020, 32