Exploring the Potential of Bacillus Species Secondary Metabolites as SARS-CoV-2 Protease Inhibitors

被引:1
|
作者
Mulyani, Yuniar [1 ]
Mulyani, Yeni [2 ]
Agung, Mochamad Untung K. [2 ]
Pratiwi, Dian Yuni [1 ]
机构
[1] Univ Padjadjaran, Fac Fisheries & Marine Sci, Dept Fisheries, Sumedang Regency, West Java Provi, Indonesia
[2] Univ Padjadjaran, Fac Fisheries & Marine Sci, Dept Marine Sci, Sumedang Regency, West Java Provi, Indonesia
来源
关键词
Virus; SARS-CoV-2; Bacillus; Proteases; Protease inhibitors; ANTIVIRAL ACTIVITY; LIPOPEPTIDE; VIRUS;
D O I
10.22207/JPAM.18.2.40
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Virus has the ability to cause health problems and even death in humans. Therefore, this review aims to assess the potential of metabolites derived from Bacillus species as viral protease inhibitors, specifically targeting Mpro/3CLpro and PLpro, in SARS-CoV-2 infection. During infection, SARS-CoV-2 enters host cells and initiates replication by translating viral proteases. The major protease (Mpro), also known as 3CLpro, and the papain-like protease (PLpro) are both encoded by SARS-CoV-2. Protease inhibitors (PIs) disrupt the formation of new viral particles by suppressing protease activity. Metabolites capable of acting as protease inhibitors found in Bacillus spp. include chondrillasterol, cholestane, trifluoroacetic acid, octadecenoic acid, stigmasterol, 9-octadecenoic acid, hexadecanoic acid, Macrolactin A, Subtilosin A, Leodoglucomide, Gramicidin S, and Tyrocidine A. Molecular docking analysis presented effective binding of these compounds to the active sites of Mpro or PLpro. The results showed that various compounds identified in Bacillus spp. had the potential to be developed as alternative drugs for combating SARS-CoV-2.
引用
收藏
页码:762 / 771
页数:10
相关论文
共 50 条
  • [31] Virtual screening of approved drugs as potential SARS-CoV-2 main protease inhibitors
    Jimenez-Alberto, Alicia
    Maria Ribas-Aparicio, Rosa
    Aparicio-Ozores, Gerardo
    Castelan-Vega, Juan A.
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2020, 88 (88)
  • [32] Discovery of Potential Inhibitors of SARS-CoV-2 Main Protease by a Transfer Learning Method
    Zhang, Huijun
    Liang, Boqiang
    Sang, Xiaohong
    An, Jing
    Huang, Ziwei
    VIRUSES-BASEL, 2023, 15 (04):
  • [33] In silico screening of potential antiviral inhibitors against SARS-CoV-2 main protease
    Palanisamy, Kandhan
    Maiyelvaganan, K. Rudharachari
    Kamalakannan, Shanmugasundaram
    Thilagavathi, Ramasamy
    Selvam, Chelliah
    Prakash, Muthuramalingam
    MOLECULAR SIMULATION, 2023, 49 (02) : 175 - 185
  • [34] In silico analysis of SARS-CoV-2 papain-like protease potential inhibitors
    Elseginy, Samia A.
    Anwar, Manal M.
    RSC ADVANCES, 2021, 11 (61) : 38616 - 38631
  • [35] Computational Repurposing of Potential Dimerization Inhibitors against SARS-CoV-2 Main Protease
    Borkotoky, Subhomoi
    Prakash, Archisha
    Modi, Gyan Prakash
    Dubey, Vikash Kumar
    LETTERS IN DRUG DESIGN & DISCOVERY, 2024, 21 (04) : 799 - 808
  • [36] Structure-based identification of potential SARS-CoV-2 main protease inhibitors
    Khan, Shama
    Fakhar, Zeynab
    Hussain, Afzal
    Ahmad, Aijaz
    Jairajpuri, Deeba Shamim
    Alajmi, Mohamed F.
    Hassan, Md. Imtaiyaz
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (08): : 3595 - 3608
  • [37] Molecular docking of potential SARS-CoV-2 papain-like protease inhibitors
    Li, Daoqun
    Luan, Junwen
    Zhang, Leiliang
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2021, 538 : 72 - 79
  • [38] Potential of NO donor furoxan as SARS-CoV-2 main protease (Mpro) inhibitors:in silicoanalysis
    Al-Sehemi, Abdullah G.
    Pannipara, Mehboobali
    Parulekar, Rishikesh S.
    Patil, Omkar
    Choudhari, Prafulla B.
    Bhatia, M. S.
    Zubaidha, P. K.
    Tamboli, Yasinalli
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2021, 39 (15): : 5804 - 5818
  • [39] Computational Docking Study of Calanolides as Potential Inhibitors of SARS-CoV-2 Main Protease
    Benalia, Abdelkrim
    Abdeldjebar, Hasnia
    Badji, Taqiy Eddine
    FRENCH-UKRAINIAN JOURNAL OF CHEMISTRY, 2022, 10 (01): : 48 - 59
  • [40] An In Silico Approach for Identification of Inhibitors as a Potential Therapeutics Targeting SARS-Cov-2 Protease
    Mamidala, Estari
    Davella, Rakesh
    Gurrapu, Swapna
    ASIAN JOURNAL OF PHARMACEUTICAL RESEARCH AND HEALTH CARE, 2020, 12 (01) : 3 - 9