Sech2 type solitary waves and the stability analysis for the KdV-mKdV equation

被引:0
|
作者
Liu, Zhi-Guo [1 ]
Liu, Muhua [1 ,2 ]
Zhang, Jinliang [1 ]
机构
[1] Henan Univ Sci & Technol, Sch Math & Stat, Luoyang 471000, Peoples R China
[2] Henan CAERI Vehicle Testing & Certificat Ctr Co Lt, Postdoctoral Innovat Practice Base, Jiaozuo 454000, Peoples R China
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
SUB-ODE METHOD; GARDNER; TERMS;
D O I
10.1038/s41598-024-67317-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, we investigated the solitary wave solutions of the KdV-mKdV equation using Hirota's bilinear method. Closed-form analytical single and multiple solitary wave solutions were obtained. Through qualitative methods and the analysis of solitary waveforms, we discovered that in addition to sech-type solitary waves, the system also contains Sech(2)-type solitary waves. By employing the trial functions method, we obtained a single Sech(2)-type solitary wave and verified its existence and stability using the split-Step Fourier Transform method. Furthermore, we use the collision of two Sech(2)-type single solitary waves to excite a stable Sech(2)-type double solitary wave. Similarly, we excite a stable triple solitary wave with three Sech(2)-type single solitary waves. This method can also be used to excite stable multiple solitary waves. It is shown that these solitary wave solutions enrich the dynamic behavior of the KdV-mKdV equation and provide methods for solving Sech(2)-type solitary waves, which hold significant theoretical value.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] The study of coherent structures of combined KdV-mKdV equation through integration schemes and stability analysis
    Hussain, Ejaz
    Mahmood, Irfan
    Shah, Syed Asif Ali
    Khatoon, Mehr
    Az-Zo'bi, Emad A.
    Ragab, Adham E.
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (05)
  • [22] The study of coherent structures of combined KdV-mKdV equation through integration schemes and stability analysis
    Ejaz Hussain
    Irfan Mahmood
    Syed Asif Ali Shah
    Mehr Khatoon
    Emad A. Az-Zo’bi
    Adham E. Ragab
    [J]. Optical and Quantum Electronics, 56
  • [23] The Generalized Wronskian Solution to a Negative KdV-mKdV Equation
    Liu Yu-Qing
    Chen Deng-Yuan
    Hu Chao
    [J]. CHINESE PHYSICS LETTERS, 2012, 29 (08)
  • [24] A direct approach to the soliton perturbation for KdV-MKdV equation
    Pan, LX
    Yan, JR
    Zhou, GH
    [J]. ACTA MATHEMATICA SCIENTIA, 2003, 23 (03) : 356 - 360
  • [25] Travelling Wave Solutions for Generalized KdV-mKdV Equation
    秦亚
    赖绍永
    [J]. Journal of Southwest Jiaotong University(English Edition), 2009, (04) : 366 - 369
  • [26] Propagation of sech2-type solitary waves in hierarchical KdV-type systems
    Ilison, Lauri
    Salupere, Andrus
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 79 (11) : 3314 - 3327
  • [27] Sech2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{Sech}^{2}$$\end{document}-type solitary waves and the stability analysis for the KdV–mKdV equation
    Zhi-Guo Liu
    Muhua Liu
    Jinliang Zhang
    [J]. Scientific Reports, 14 (1)
  • [28] A DIRECT APPROACH TO THE SOLITON PERTURBATION FOR KdV-MKdV EQUATION
    潘留仙
    颜家壬
    周光辉
    [J]. Acta Mathematica Scientia, 2003, (03) : 356 - 360
  • [29] Multi-symplectic scheme and simulation of solitary wave solution for generalized KdV-mKdV equation
    Hu, Weipeng
    Deng, Zichen
    Li, Wencheng
    [J]. Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University, 2008, 26 (04): : 450 - 453
  • [30] Quasi-Periodic, Periodic Waves, and Soliton Solutions for the Combined KdV-mKdV Equation
    Abdel-Salam, Emad A. -B.
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2009, 64 (9-10): : 639 - 645