Scaffold Infiltrated Cathodes for Low-Temperature Solid Oxide Fuel Cells

被引:3
|
作者
Robinson, Ian A. [1 ,2 ]
Horlick, Samuel A. [1 ,3 ]
Huang, Yi-Lin [1 ,2 ]
Lam, Alexandra P. [1 ,3 ]
Ganti, Sridhar S. [1 ,3 ]
Wachsman, Eric D. [3 ,4 ]
机构
[1] Univ Maryland, Maryland Energy Innovat Inst, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA
[4] Univ Maryland, Maryland Energy Innovat Inst, Dept Mat Sci & Engn, College Pk, MD 20742 USA
关键词
solid oxide cell; cathode; scaffold; surface modification; durability; OXYGEN REDUCTION; HIGH-PERFORMANCE; ELECTRODE;
D O I
10.1021/acsami.4c04627
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lowering the operating temperature of solid oxide fuel cells (SOFCs) and electrolysis cells (SOECs) to reduce system cost and increase lifetime is the key to widely deploy this highly efficient energy technology, but the high cathode polarization losses at low temperatures limit overall cell performance. Here we demonstrate that by engineering a universal ceria-based scaffold with infiltrated nanoscale electrocatalysts, a low cathode polarization <0.25 Omega<middle dot>cm(2) with remarkably high performance 1 W/cm(2) at 550 degrees C is achieved. The combination of low processing and operating temperature restrains the nanosized electrocatalysts, not only allowing fast oxygen transport but also providing an essential electronically connective network to facilitate electrochemical reactions without requiring the high-temperature processing of a separate cathode layer. Moreover, excellent SOFC durability was demonstrated for over 500 h. This work shows a promising pathway to reduce processing/system costs with all scalable ceramic processing techniques for the future development of low-temperature SOFCs and SOECs.
引用
收藏
页码:39225 / 39231
页数:7
相关论文
共 50 条
  • [41] Chromate-Based Oxide Anodes for Low-Temperature Operating Solid Oxide Fuel Cells
    Hussain, A. M.
    Robinson, I.
    Pan, K. J.
    Blackburn, Bryan
    Pellegrinelli, C.
    Huang, Y. L.
    Wachsman, E. D.
    SOLID OXIDE FUEL CELLS 15 (SOFC-XV), 2017, 78 (01): : 1319 - 1325
  • [42] Electrochemical characterization of infiltrated Bi2V0.9Cu0.1O5.35 cathodes for use in low temperature solid oxide fuel cells
    Samson, Alfred Junio
    Sogaard, Martin
    Bonanos, Nikolaos
    SOLID STATE IONICS, 2012, 211 : 74 - 79
  • [43] Low-temperature solid-oxide fuel cells utilizing thin bilayer electrolytes
    Tsai, TP
    Perry, E
    Barnett, S
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (05) : L130 - L132
  • [44] Impedance analysis of thin YSZ electrolyte for low-temperature solid oxide fuel cells
    DiGiuseppe, Gianfranco
    Thompson, David
    Gumeci, Cenk
    Hussain, A. Mohammed
    Dale, Nilesh
    IONICS, 2019, 25 (08) : 3537 - 3548
  • [45] A Highly Stable and Active Hybrid Cathode for Low-Temperature Solid Oxide Fuel Cells
    Liang, Fengli
    Zhou, Wei
    Zhu, Zhonghua
    CHEMELECTROCHEM, 2014, 1 (10): : 1627 - 1631
  • [46] Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells
    Harris, J.
    Kesler, O.
    JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2010, 19 (1-2) : 328 - 335
  • [47] Impedance analysis of thin YSZ electrolyte for low-temperature solid oxide fuel cells
    Gianfranco DiGiuseppe
    David Thompson
    Cenk Gumeci
    A. Mohammed Hussain
    Nilesh Dale
    Ionics, 2019, 25 : 3537 - 3548
  • [48] Atmospheric Plasma Spraying Low-Temperature Cathode Materials for Solid Oxide Fuel Cells
    J. Harris
    O. Kesler
    Journal of Thermal Spray Technology, 2010, 19 : 328 - 335
  • [49] Perovskite Cathode Materials for Low-Temperature Solid Oxide Fuel Cells: Fundamentals to Optimization
    Zhiheng Li
    Mengran Li
    Zhonghua Zhu
    Electrochemical Energy Reviews, 2022, 5 : 263 - 311
  • [50] A novel polymer-ceramic composite low-temperature solid oxide fuel cells
    Yuzheng Lu
    Kunping Zhang
    Junjiao Li
    Xiaomin Tian
    Journal of Materials Science: Materials in Electronics, 2021, 32 : 1918 - 1927