Hybrid interior ideals in left regular AG-groupoids

被引:0
|
作者
Meenakshi, S. [1 ]
Elavarasan, B. [1 ]
Jun, Y. B. [2 ]
机构
[1] Karunya Inst Technol & Sci, Dept Math, Coimbatore 641114, Tamil Nadu, India
[2] Gyeongsang Natl Univ, Dept Math Educ, Jinju 52828, South Korea
关键词
Left regular AG-groupoids; AG-groupoids; hybrid structure; hybrid interior ideals; BI-IDEALS;
D O I
10.1142/S1793830924500381
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The fuzzy set is a great tool for dealing with indeterminacy that can be clearly and effectively analyzed from the decision-maker's viewpoint, and it is highly helpful for revealing people's hesitations in their everyday interactions. In order to address practical issues, soft set theory has recently been created. The hybrid structures were developed by Jun et al. by merging the fuzzy and soft sets. Hybrid structures are soft set and fuzzy set speculations. In this paper, hybrid interior ideals in left regular AG-groupoids are characterized, and certain significant properties in various areas are also examined. Moreover, we establish the basic principles of an AG-groupoid in hybrid interior (respectively, right, left, two-sided) ideals.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] ON FUZZY (2,2)-REGULAR ORDERED Γ-Ag**-GROUPOIDS
    Faisal
    Yaqoob, Naveed
    Hila, Kostaq
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2012, 74 (02): : 87 - 104
  • [42] Hybrid n-Interior Ideals and Hybrid (m, n)-Ideals in Ordered Semigroups
    Tiprachot, Nuchanat
    Lekkoksung, Somsak
    Pibaljommee, Bundit
    Lekkoksung, Nareupanat
    [J]. FUZZY INFORMATION AND ENGINEERING, 2023, 15 (02) : 128 - 148
  • [43] Characterizations of regular Abel-Grassmann's groupoids by the properties of their (∈, ∈ Vqk)-fuzzy ideals
    Ma, Xueling
    Zhan, Jianming
    Khan, Madad
    Aziz, Tariq
    [J]. Italian Journal of Pure and Applied Mathematics, 2014, 32 : 309 - 324
  • [44] Hybrid Ideals in an AG-Groupoid
    Porselvi, K.
    Muhiuddin, G.
    Elavarasan, B.
    Jun, Y. B.
    John, J. Catherine Grace
    [J]. NEW MATHEMATICS AND NATURAL COMPUTATION, 2023, 19 (01) : 289 - 305
  • [45] SOME PROPERTIES OF LEFT IDEALS IN REGULAR AND BIREGULAR RINGS
    BAILEY, J
    [J]. TEXAS JOURNAL OF SCIENCE, 1971, 22 (2-3): : 265 - &
  • [46] ANTI-HYBRID INTERIOR IDEALS IN ORDERED SEMIGROUPS
    Linesawat, Krittika
    Lekkoksung, Somsak
    Lekkoksung, Nareupanat
    [J]. JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2022, 40 (3-4): : 769 - 784
  • [47] REGULARITIES IN TERMS OF HYBRID n-INTERIOR IDEALS AND HYBRID (m, n)-IDEALS OF ORDERED SEMIGROUPS
    Tiprachot, N. U. C. H. A. N. A. T.
    Lekkoksung, S. O. M. S. A. K.
    Lekkoksung, N. A. R. E. U. P. A. N. A. T.
    Pibaljommee, B. U. N. D. I. T.
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2022, 18 (05): : 1347 - 1362
  • [48] (∈γ, ∈γ ∨qδ)-fuzzy right ideals of Intra-Regular Abel Grassmann's-Groupoids
    Khan, Madad
    Leoreanu-Fotea, Violeta
    Kokab, Syeda
    [J]. ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2014, 22 (03): : 95 - 113
  • [49] Hybrid ideals in right regular LA-semigroups
    Meenakshi, S.
    Keerthika, V.
    Muhiuddin, G.
    Elavarasan, B.
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (04)
  • [50] Left regular representations of Garside categories I. C*-algebras and groupoids
    Li, Xin
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2023, 65 : S53 - S86