Implicit Graph Neural Networks: A Monotone Operator Viewpoint

被引:0
|
作者
Baker, Justin [1 ,2 ]
Wang, Qingsong [1 ,2 ]
Hauck, Cory [3 ]
Wang, Bao [1 ,2 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[2] Univ Utah, Sci Comp & Imaging Inst, Salt Lake City, UT 84112 USA
[3] Oak Ridge Natl Lab, Oak Ridge, TN USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Implicit graph neural networks (IGNNs) - that solve a fixed-point equilibrium equation using Picard iteration for representation learning - have shown remarkable performance in learning long-range dependencies (LRD) in the underlying graphs. However, IGNNs suffer from several issues, including 1) their expressivity is limited by their parameterizations for the well-posedness guarantee, 2) IGNNs are unstable in learning LRD, and 3) IGNNs become computationally inefficient when learning LRD. In this paper, we provide a new well-posedness characterization for IGNNs leveraging monotone operator theory, resulting in a much more expressive parameterization than the existing one. We also propose an orthogonal parameterization for IGNN based on Cayley transform to stabilize learning LRD. Furthermore, we leverage Anderson-accelerated operator splitting schemes to efficiently solve for the fixed point of the equilibrium equation of IGNN with monotone or orthogonal parameterization. We verify the computational efficiency and accuracy of the new models over existing IGNNs on various graph learning tasks at both graph and node levels. Code is available at https://github.com/Utah-Math-Data-Science/MIGNN
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Graphon Neural Networks and the Transferability of Graph Neural Networks
    Ruiz, Luana
    Chamon, Luiz F. O.
    Ribeiro, Alejandro
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [32] Graph neural networks and implicit neural representation for near-optimal topology prediction over irregular design domains
    Seo, Minsik
    Min, Seungjae
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [33] Solving Partially Monotone Problems with Neural Networks
    Velikova, Marina
    Daniels, Hennie
    Feelders, Ad
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 12, 2006, 12 : 82 - +
  • [34] Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels
    Du, Simon S.
    Hou, Kangcheng
    Poczos, Barnabas
    Salakhutdinov, Ruslan
    Wang, Ruosong
    Xu, Keyulu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [35] Rethinking Graph Regularization for Graph Neural Networks
    Yang, Han
    Ma, Kaili
    Cheng, James
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 4573 - 4581
  • [36] Graph Neural Networks with Local Graph Parameters
    Barcelo, Pablo
    Geerts, Floris
    Reutter, Juan
    Ryschkov, Maksimilian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [37] Semisupervised Graph Neural Networks for Graph Classification
    Xie, Yu
    Liang, Yanfeng
    Gong, Maoguo
    Qin, A. K.
    Ong, Yew-Soon
    He, Tiantian
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (10) : 6222 - 6235
  • [38] Learning graph normalization for graph neural networks
    Chen, Yihao
    Tang, Xin
    Qi, Xianbiao
    Li, Chun-Guang
    Xiao, Rong
    NEUROCOMPUTING, 2022, 493 : 613 - 625
  • [39] Learning Graph Matching with Graph Neural Networks
    Dobler, Kalvin
    Riesen, Kaspar
    ARTIFICIAL NEURAL NETWORKS IN PATTERN RECOGNITION, ANNPR 2024, 2024, 15154 : 3 - 12
  • [40] IMPLICIT SALIENCY IN DEEP NEURAL NETWORKS
    Sun, Yutong
    Prabhushankar, Mohit
    AlRegib, Ghassan
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2915 - 2919