AutoMixer for Improved Multivariate Time-Series Forecasting on Business and IT Observability Data
被引:0
|
作者:
Palaskar, Santosh
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol, Bombay, Maharashtra, IndiaIndian Inst Technol, Bombay, Maharashtra, India
Palaskar, Santosh
[1
]
Ekambaram, Vijay
论文数: 0引用数: 0
h-index: 0
机构:
IBM Res, Bangalore, Karnataka, IndiaIndian Inst Technol, Bombay, Maharashtra, India
Ekambaram, Vijay
[2
]
Jati, Arindam
论文数: 0引用数: 0
h-index: 0
机构:
IBM Res, Bangalore, Karnataka, IndiaIndian Inst Technol, Bombay, Maharashtra, India
Jati, Arindam
[2
]
Gantayat, Neelamadhav
论文数: 0引用数: 0
h-index: 0
机构:
IBM Res, Bangalore, Karnataka, IndiaIndian Inst Technol, Bombay, Maharashtra, India
Gantayat, Neelamadhav
[2
]
Saha, Avirup
论文数: 0引用数: 0
h-index: 0
机构:
IBM Res, Bangalore, Karnataka, IndiaIndian Inst Technol, Bombay, Maharashtra, India
Saha, Avirup
[2
]
Nagar, Seema
论文数: 0引用数: 0
h-index: 0
机构:
IBM Res, Bangalore, Karnataka, IndiaIndian Inst Technol, Bombay, Maharashtra, India
Nagar, Seema
[2
]
Nguyen, Nam H.
论文数: 0引用数: 0
h-index: 0
机构:
IBM Res, Bangalore, Karnataka, IndiaIndian Inst Technol, Bombay, Maharashtra, India
Nguyen, Nam H.
[2
]
Dayama, Pankaj
论文数: 0引用数: 0
h-index: 0
机构:
IBM Res, Bangalore, Karnataka, IndiaIndian Inst Technol, Bombay, Maharashtra, India
Dayama, Pankaj
[2
]
Sindhgatta, Renuka
论文数: 0引用数: 0
h-index: 0
机构:
IBM Res, Bangalore, Karnataka, IndiaIndian Inst Technol, Bombay, Maharashtra, India
Sindhgatta, Renuka
[2
]
Mohapatra, Prateeti
论文数: 0引用数: 0
h-index: 0
机构:
IBM Res, Bangalore, Karnataka, IndiaIndian Inst Technol, Bombay, Maharashtra, India
Mohapatra, Prateeti
[2
]
Kumar, Harshit
论文数: 0引用数: 0
h-index: 0
机构:
IBM Res, Bangalore, Karnataka, IndiaIndian Inst Technol, Bombay, Maharashtra, India
Kumar, Harshit
[2
]
Kalagnanam, Jayant
论文数: 0引用数: 0
h-index: 0
机构:
IBM Res, Bangalore, Karnataka, IndiaIndian Inst Technol, Bombay, Maharashtra, India
Kalagnanam, Jayant
[2
]
Hemachandra, Nandyala
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol, Bombay, Maharashtra, IndiaIndian Inst Technol, Bombay, Maharashtra, India
Hemachandra, Nandyala
[1
]
Rangaraj, Narayan
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol, Bombay, Maharashtra, IndiaIndian Inst Technol, Bombay, Maharashtra, India
Rangaraj, Narayan
[1
]
机构:
[1] Indian Inst Technol, Bombay, Maharashtra, India
[2] IBM Res, Bangalore, Karnataka, India
来源:
THIRTY-EIGTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 21
|
2024年
关键词:
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
The efficiency of business processes relies on business key performance indicators (Biz-KPIs), that can be negatively impacted by IT failures. Business and IT Observability (BizITObs) data fuses both Biz-KPIs and IT event channels together as multivariate time series data. Forecasting Biz-KPIs in advance can enhance efficiency and revenue through proactive corrective measures. However, BizITObs data generally exhibit both useful and noisy inter-channel interactions between Biz-KPIs and IT events that need to be effectively decoupled. This leads to suboptimal forecasting performance when existing multivariate forecasting models are employed. To address this, we introduce AutoMixer, a time-series Foundation Model (FM) approach, grounded on the novel technique of channel-compressed pretrain and finetune workflows. AutoMixer leverages an AutoEncoder for channel-compressed pretraining and integrates it with the advanced TSMixer model for multivariate time series forecasting. This fusion greatly enhances the potency of TSMixer for accurate forecasts and also generalizes well across several downstream tasks. Through detailed experiments and dashboard analytics, we show AutoMixer's capability to consistently improve the Biz-KPI's forecasting accuracy (by 11-15%) which directly translates to actionable business insights.