Radiative nanofluid flow over a slender stretching Riga plate under the impact of exponential heat source/sink

被引:8
|
作者
Ganie, Abdul Hamid [1 ]
Farooq, Muhammad [2 ]
Nasrat, Mohammad Khalid [3 ]
Bilal, Muhammad [2 ]
Muhammad, Taseer [4 ]
Ghachem, Kaouther [5 ]
Adnan [6 ]
机构
[1] Saudi Elect Univ, Coll Sci & Theoret Studies, Dept Basic Sci, Riyadh 11673, Saudi Arabia
[2] Univ Peshawar, Dept Math, Sheikh Taimur Acad Block II, Peshawar 25120, Khyber Pakhtunk, Pakistan
[3] Laghman Univ, Dept Math, Mehterlam 2701, Laghman, Afghanistan
[4] King Khalid Univ, Coll Sci, Dept Math, Abha, Saudi Arabia
[5] Princess Nourah Bint Abdulrahman Univ, Dept Ind & Syst Engn, Coll Engn, POB 84428, Riyadh 11671, Saudi Arabia
[6] Mohi Ud Din Islamic Univ, Dept Math, Islamabad 12080, Pakistan
来源
OPEN PHYSICS | 2024年 / 22卷 / 01期
关键词
thermal radiation; viscous dissipation; numerical solution; mixed convection; exponential heat source/sink; slender sheet;
D O I
10.1515/phys-2024-0020
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recognizing the flow behaviours across a Riga plate can reveal information about the aerodynamic efficiency of aircraft, heat propagation, vehicles, and other structures. These data are critical for optimizing design and lowering drag. Therefore, the purpose of the current analysis is to examine the energy and mass transfer across the mixed convective nanofluid flows over an extending Riga plate. The fluid flow is deliberated under the influences of viscous dissipation, exponential heat source/sink, activation energy, and thermal radiation. The Buongiorno's concept is utilized for the thermophoretic effect and Brownian motion along with the convective conditions. The modelled are simplified into the lowest order by using similarity transformation. The obtained set of non-dimensional ordinary differential equations is then numerically solved through the parametric continuation method. For accuracy and validation of the outcomes, the results are compared to the existing studies. From the graphical analysis, it can be observed that the fluid velocity boosts with the rising values of the divider thickness parameter. The fluid temperature also improves with the effect of Biot number, Eckert number, and heat source factor. Furthermore, the effect of heat source sink factor drops the fluid temperature.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Magnetized Dissipative Casson Nanofluid Flow over a Stretching Sheet with Heat Source/Sink and Soret Effect Under Porous Medium
    Sharanayya
    Biradar, Suresh
    BIONANOSCIENCE, 2023, 13 (04) : 2103 - 2121
  • [22] Transportation of modified nanofluid flow with time dependent viscosity over a Riga plate: Exponentially stretching
    Abbas, Nadeem
    Nadeem, S.
    Saleem, S.
    Issakhov, Alibek
    AIN SHAMS ENGINEERING JOURNAL, 2021, 12 (04) : 3967 - 3973
  • [23] Statistical and entropy optimization modeling for radiative hybrid nanofluid flow with Hall effect over exponential stretching/shrinking plate
    Jameel, Muhammad
    Shah, Zahir
    Shafiq, Anum
    Rooman, Muhammad
    Vrinceanu, Narcisa
    Alshehri, Ahmed
    Islam, Saeed
    International Journal of Thermofluids, 2023, 20
  • [24] Gyrotactic Motile Microorganisms Impact on Pseudoplastic Nanofluid Flow over a Moving Riga Surface with Exponential Heat Flux
    Waqas, Hassan
    Oreijah, Mowffaq
    Guedri, Kamel
    Khan, Sami Ullah
    Yang, Song
    Yasmin, Sumeira
    Khan, Muhammad Ijaz
    Bafakeeh, Omar T.
    Tag-ElDin, El Sayed Mohamed
    Galal, Ahmed M.
    CRYSTALS, 2022, 12 (09)
  • [25] Entropy generation analysis for the radiative flow of Sisko nanofluid with heat sink/source
    Waqas, M.
    Sunthrayuth, Pongsakorn
    Pasha, Amjad Ali
    Khan, Waqar Azeem
    Hobiny, A.
    Asghar, Zeeshan
    WAVES IN RANDOM AND COMPLEX MEDIA, 2022,
  • [26] Bioconvection transport of magnetized micropolar nanofluid by a Riga plate with non-uniform heat sink/source
    Waqas, Hassan
    Farooq, Umar
    Alqarni, M. S.
    Muhammad, Taseer
    Khan, Muhammad Altaf
    WAVES IN RANDOM AND COMPLEX MEDIA, 2021,
  • [27] The study of three dimensional radiative mhd casson nanofluid over an exponential porous stretching sheet with heat source under convective boundary conditions
    Kumar, Prathi V.
    Ibrahim, Shaik M.
    Lorenzini, Giulio
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2018, 36 (01) : 1 - 10
  • [28] Numerical analysis of MHD tangent hyperbolic nanofluid flow over a stretching surface subject to heat source/sink
    Waqas, Muhammad
    Almutiri, Mariam Redn
    Yagoob, Budur
    Ahmad, Hijaz
    Bilal, Muhammad
    PRAMANA-JOURNAL OF PHYSICS, 2024, 98 (01):
  • [29] Entropy generation minimization on electromagnetohydrodynamic radiative Casson nanofluid flow over a melting Riga plate
    Obalalu, Adebowale Martins
    Adebayo, Lawal Lanre
    Colak, Ilhami
    Ajala, Adebayo Olusegun
    Wahaab, Fatai Adisa
    HEAT TRANSFER, 2022, 51 (05) : 3951 - 3978
  • [30] Investigation of 3D flow of magnetized hybrid nanofluid with heat source/sink over a stretching sheet
    Farooq, Umar
    Tahir, Madeeha
    Waqas, Hassan
    Muhammad, Taseer
    Alshehri, Ahmad
    Imran, Muhammad
    SCIENTIFIC REPORTS, 2022, 12 (01)