Data-Driven Semantic Segmentation Method for Detecting Metal Surface Defects

被引:0
|
作者
Zhang, Zhao [1 ,2 ,3 ]
Wang, Weibo [1 ,2 ,3 ]
Tian, Xiaoyan [4 ]
Tan, Jiubin [2 ,3 ]
机构
[1] Harbin Inst Technol, Adv Nucl & New Energy Res Inst, Minist Ind & Informat Technol, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Ctr Ultraprecis Optoelect Instrument Engn, Minist Ind & Informat Technol, Harbin 150001, Peoples R China
[3] Harbin Inst Technol, Key Lab Ultraprecis Intelligent Instrumentat, Minist Ind & Informat Technol, Harbin 150001, Peoples R China
[4] Harbin Inst Technol, Fac Comp, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Attention mechanism; convolutional neural network (CNN); surface defect detection;
D O I
10.1109/JSEN.2024.3381928
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate semantic segmentation is crucial for monitoring the quality of metal surfaces in industrial production. To solve the issues of the scarce quantities and uneven distributions of metal surface defects, challenging to achieve real-time detection and hardware integration, and hard to capture boundary information, this study proposes a dual-attention multiscale residual aggregation network (DMRAN), category weight (CW) calculation method, defect migration topology method (DMT), and loss calculation method for dual boundary attention (DBA). The methods solved the technical issues by aggregating the multiscale information of the original image and exerting attention, changing the weight coefficients of categories, expanding the datasets using the topology of the defects of defective samples to a defect-free image, and paying dual attention to the boundaries of ground truth (GT) and predicted image. Compared to the 15 mainstream methods and our previous work, this study achieved a favorable performance on five public datasets with 5.1 M parameters and real-time inference speed of 37.5 frames/s. Additionally, this study demonstrates commendable robustness in the presence of noise. Our code locates at https://github.com/zz-ux/Metal-surface-defect-detection.
引用
下载
收藏
页码:15676 / 15689
页数:14
相关论文
共 50 条
  • [21] Data-driven segmentation of cortical calcium dynamics
    Weiser, Sydney J.
    Mullen, Brian
    Ascencio, Desiderio J.
    Ackman, James
    PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (05)
  • [22] Data-driven nonlinear diffusion for object segmentation
    Xu, LQ
    Izquierdo, E
    2000 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2000, : 319 - 322
  • [23] On the data-driven COS method
    Leitao, Alvaro
    Oosterlee, Cornelis W.
    Ortiz-Gracia, Luis
    Bohte, Sander M.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 317 : 68 - 84
  • [24] DATA AUGMENTATION OF ENGINEERING DRAWINGS FOR DATA-DRIVEN COMPONENT SEGMENTATION
    Zhang, Wentai
    Chen, Quan
    Koz, Can
    Xie, Liuyue
    Regmi, Amit
    Yamakawa, Soji
    Furuhata, Tomotake
    Shimada, Kenji
    Kara, Levent Burak
    PROCEEDINGS OF ASME 2022 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2022, VOL 3A, 2022,
  • [25] Abnormal discourse in semantic dementia: A data-driven approach
    Garrard, Peter
    Forsyth, Richard
    NEUROCASE, 2010, 16 (06) : 520 - 528
  • [26] WaveSeq: A Novel Data-Driven Method of Detecting Histone Modification Enrichments Using Wavelets
    Mitra, Apratim
    Song, Jiuzhou
    PLOS ONE, 2012, 7 (09):
  • [27] Detecting Synonymous Properties by Shared Data-Driven Definitions
    Kalo, Jan-Christoph
    Mennicke, Stephan
    Ehler, Philipp
    Balke, Wolf-Tilo
    SEMANTIC WEB (ESWC 2020), 2020, 12123 : 360 - 375
  • [28] Detecting the Olympic tourism legacy: a data-driven approach
    Moss, Steven E.
    Liu, Jun
    Moss, Janet
    JOURNAL OF POLICY RESEARCH IN TOURISM LEISURE AND EVENTS, 2024,
  • [29] A Hybrid Data-Driven Method for Wire Rope Surface Defect Detection
    Zhou, Ping
    Zhou, Gongbo
    Li, Yingming
    He, Zhenzhi
    Liu, Yiwen
    IEEE SENSORS JOURNAL, 2020, 20 (15) : 8297 - 8306
  • [30] Adaptive segmentation algorithm for metal surface defects
    Li, Qingqu (li_qingwu@163.com), 1600, Science Press (38):