Data-Driven Semantic Segmentation Method for Detecting Metal Surface Defects

被引:0
|
作者
Zhang, Zhao [1 ,2 ,3 ]
Wang, Weibo [1 ,2 ,3 ]
Tian, Xiaoyan [4 ]
Tan, Jiubin [2 ,3 ]
机构
[1] Harbin Inst Technol, Adv Nucl & New Energy Res Inst, Minist Ind & Informat Technol, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Ctr Ultraprecis Optoelect Instrument Engn, Minist Ind & Informat Technol, Harbin 150001, Peoples R China
[3] Harbin Inst Technol, Key Lab Ultraprecis Intelligent Instrumentat, Minist Ind & Informat Technol, Harbin 150001, Peoples R China
[4] Harbin Inst Technol, Fac Comp, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Attention mechanism; convolutional neural network (CNN); surface defect detection;
D O I
10.1109/JSEN.2024.3381928
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate semantic segmentation is crucial for monitoring the quality of metal surfaces in industrial production. To solve the issues of the scarce quantities and uneven distributions of metal surface defects, challenging to achieve real-time detection and hardware integration, and hard to capture boundary information, this study proposes a dual-attention multiscale residual aggregation network (DMRAN), category weight (CW) calculation method, defect migration topology method (DMT), and loss calculation method for dual boundary attention (DBA). The methods solved the technical issues by aggregating the multiscale information of the original image and exerting attention, changing the weight coefficients of categories, expanding the datasets using the topology of the defects of defective samples to a defect-free image, and paying dual attention to the boundaries of ground truth (GT) and predicted image. Compared to the 15 mainstream methods and our previous work, this study achieved a favorable performance on five public datasets with 5.1 M parameters and real-time inference speed of 37.5 frames/s. Additionally, this study demonstrates commendable robustness in the presence of noise. Our code locates at https://github.com/zz-ux/Metal-surface-defect-detection.
引用
收藏
页码:15676 / 15689
页数:14
相关论文
共 50 条
  • [1] Semantic Segmentation of Metal Surface Defects and Corresponding Strategies
    Zhang, Zhao
    Wang, Weibo
    Tian, Xiaoyan
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [2] An Automatic Data-Driven Method for SAR Image Segmentation in Sea Surface Analysis
    Gemme, Laura
    Dellepiane, Silvana G.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (05): : 2633 - 2646
  • [3] SPMUNet: Semantic segmentation of citrus surface defects driven by superpixel feature
    Xu, Xufeng
    Xu, Tao
    Li, Zetong
    Huang, Xinyao
    Zhu, Yihang
    Rao, Xiuqin
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 224
  • [4] Wood Crack Detection Based on Data-Driven Semantic Segmentation Network
    Lin, Ye
    Xu, Zhezhuang
    Chen, Dan
    Ai, Zhijie
    Qiu, Yang
    Yuan, Yazhou
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2023, 10 (06) : 1510 - 1512
  • [5] Wood Crack Detection Based on Data-Driven Semantic Segmentation Network
    Ye Lin
    Zhezhuang Xu
    Dan Chen
    Zhijie Ai
    Yang Qiu
    Yazhou Yuan
    [J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10 (06) : 1510 - 1512
  • [6] Small data-driven semantic segmentation of wear debris in ferrography images
    Xi, Yinhu
    Zhang, Nan
    Li, Bo
    [J]. MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (06)
  • [7] Semantic Data-Driven Microservices
    Salvadori, Ivan
    Huf, Alexis
    Siqueira, Frank
    [J]. 2019 IEEE 43RD ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), VOL 1, 2019, : 402 - 410
  • [8] A Data Augmentation Method for Data-Driven Component Segmentation of Engineering Drawings
    Zhang, Wentai
    Joseph, Joe
    Chen, Quan
    Koz, Can
    Xie, Liuyue
    Regmi, Amit
    Yamakawa, Soji
    Furuhata, Tomotake
    Shimada, Kenji
    Kara, Levent Burak
    [J]. JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2024, 24 (01)
  • [9] A completely data-driven method for detecting neuronal activation in fMRI
    Lee, Sarah
    Zelaya, Fernando
    Amiel, Stephanie A.
    Brammer, Michael J.
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 445 - +
  • [10] Data-Driven Method for Detecting Flight Trajectory Deviation Anomaly
    Guo, Ziyi
    Yin, Chang
    Zeng, Weili
    Tan, Xianghua
    Bao, Jie
    [J]. JOURNAL OF AEROSPACE INFORMATION SYSTEMS, 2022, 19 (12): : 799 - 810