Arti fi cial Intelligence Electrocardiography to Predict Atrial Fibrillation in Patients With Chronic Lymphocytic Leukemia

被引:2
|
作者
Christopoulos, Georgios [1 ]
Attia, Zachi I. [1 ]
Achenbach, Sara J. [2 ]
Rabe, Kari G. [2 ]
Call, Timothy G. [3 ]
Ding, Wei [3 ]
Leis, Jose F. [4 ]
Muchtar, Eli [3 ]
Kenderian, Saad S. [3 ]
Wang, Yucai [3 ]
Hampel, Paul J. [3 ]
Koehler, Amber B. [3 ]
Kay, Neil E. [3 ]
Kapoor, Prashant [3 ]
Slager, Susan L. [2 ,3 ]
Shanafelt, Tait D. [5 ]
Noseworthy, Peter A. [1 ]
Friedman, Paul A. [1 ]
Herrmann, Joerg [1 ]
Parikh, Sameer A. [3 ]
机构
[1] Mayo Clin, Dept Cardiovasc Med, Rochester, MN 55905 USA
[2] Mayo Clin, Dept Quantitat Hlth Sci, Rochester, MN USA
[3] Mayo Clin, Div Hematol, Rochester, MN 55905 USA
[4] Mayo Clin, Div Hematol & Med Oncol, Scottsdale, AZ USA
[5] Stanford Univ, Dept Med, Palo Alto, CA USA
来源
JACC: CARDIOONCOLOGY | 2023年 / 6卷 / 02期
基金
美国国家卫生研究院;
关键词
arti fi cial intelligence; atrial fi brillation; chronic lymphocytic leukemia; electrocardiography; RISK;
D O I
10.1016/j.jaccao.2024.02.006
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
BACKGROUND The use of an arti ficial intelligence electrocardiography (AI-ECG) algorithm has demonstrated its reliability in predicting the risk of atrial fibrillation (AF) within the general population. OBJECTIVES This study aimed to determine the effectiveness of the AI-ECG score in identifying patients with chronic lymphocytic leukemia (CLL) who are at high risk of developing AF. METHODS We estimated the probability of AF based on AI-ECG among patients with CLL extracted from the Mayo Clinic CLL database. Additionally, we computed the Mayo Clinic CLL AF risk score and determined its ability to predict AF. RESULTS Among 754 newly diagnosed patients with CLL, 71.4% were male (median age = 69 years). The median baseline AI-ECG score was 0.02 (range = 0-0.93), with a value >= 0.1 indicating high risk. Over a median follow-up of 5.8 years, the estimated 10 -year cumulative risk of AF was 26.1%. Patients with an AI-ECG score of >= 0.1 had a signi ficantly higher risk of AF (HR: 3.9; 95% CI: 2.6-5.7; P < 0.001). This heightened risk remained signi ficant (HR: 2.5; 95% CI: 1.63.9; P < 0.001) even after adjusting for the Mayo CLL AF risk score, heart failure, chronic kidney disease, and CLL therapy. In a second cohort of CLL patients treated with a Bruton tyrosine kinase inhibitor (n = 220), a pretreatment AIECG score >= 0.1 showed a nonsigni ficant increase in the risk of AF (HR: 1.7; 95% CI: 0.8-3.6; P = 0.19). CONCLUSIONS An AI-ECG algorithm, in conjunction with the Mayo CLL AF risk score, can predict the risk of AF in patients with newly diagnosed CLL. Additional studies are needed to determine the role of AI-ECG in predicting AF risk in CLL patients treated with a Bruton tyrosine kinase inhibitor. (J Am Coll Cardiol CardioOnc 2024;6:251 -263) (c) 2024 The Authors. Published by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:251 / 263
页数:13
相关论文
共 50 条
  • [31] The role of arti fi cial intelligence - assisted endoscopy surveillance in clinical practice: controversies and future perspectives
    Ma, Bin
    Meng, Qingkai
    [J]. GASTROINTESTINAL ENDOSCOPY, 2024, 100 (02) : 346 - 346
  • [32] Regress with Progress: Look for Shrinkage after B/F-EVAR with the Eye of Arti fi cial Intelligence
    Melloni, Andrea
    Bertoglio, Luca
    [J]. EUROPEAN JOURNAL OF VASCULAR AND ENDOVASCULAR SURGERY, 2024, 67 (05)
  • [33] Nordic radiographers ' and students ' perspectives on arti fi cial intelligence- A cross-sectional online survey
    Pedersen, M. R. V.
    Kusk, M. W.
    Lysdahlgaard, S.
    Mork-Knudsen, H.
    Malamateniou, C.
    Jensen, J.
    [J]. RADIOGRAPHY, 2024, 30 (03) : 776 - 783
  • [34] An arti fi cial intelligence-assisted clinical framework to facilitate diagnostics and translational discovery in hematologic neoplasia
    Tang, Ming
    Fardzadeh, Pedram
    Pietzsch, Stefan
    Schroeder, Charlotte
    Eberhardt, Adrian
    van Boemmel, Alena
    Escherich, Gabriele
    Hofmann, Winfried
    Horstmann, Martin A.
    Illig, Thomas
    Mccrary, Matt
    Lentes, Jana
    Metzler, Markus
    Nejdl, Wolfgang
    Schlegelberger, Brigitte
    Schrappe, Martin
    Zimmermann, Martin
    Miarka-Walczyk, Karolina
    Pastorczak, Agata
    Cario, Gunnar
    Renard, Bernhard Y.
    Stanulla, Martin
    Bergmann, Anke Katharina
    [J]. EBIOMEDICINE, 2024, 104
  • [35] A Scoring System to Predict the Risk of Atrial Fibrillation in Chronic Lymphocytic Leukemia and Its Validation in a Cohort of Ibrutinib-Treated Patients
    Visentin, Andrea
    Deodato, Marina
    Mauro, Francesca Romana
    Autore, Francesco
    Reda, Gianluigi
    Vitale, Candida
    Molica, Stefano
    Rigolin, Gian Matteo
    Imbergamo, Silvia
    Scomazzon, Edoardo
    Pravato, Stefano
    Frezzato, Federica
    Facco, Monica
    Piazza, Francesco
    Cesini, Laura
    Tedeschi, Alessandra
    Laurenti, Luca
    Cortelezzi, Agostino
    Coscia, Marta
    Cuneo, Antonio
    Foa, Robin
    Semenzato, Gianpietro
    Trentin, Livio
    [J]. BLOOD, 2018, 132
  • [36] Stakeholder perspectives towards diagnostic arti fi cial intelligence: a co-produced qualitative evidence synthesis
    Kuo, Rachel Yi Ling
    Freethy, Alexander
    Smith, Judi
    Hill, Rosie
    Joanna, C.
    Jerome, Derek
    Harriss, Eli
    Collins, Gary S.
    Tutton, Elizabeth
    Furniss, Dominic
    [J]. ECLINICALMEDICINE, 2024, 71
  • [37] Accuracy of arti fi cial intelligence-designed single-molar dental prostheses: A feasibility study
    Chau, Reinhard Chun Wang
    Hsung, Richard Tai-Chiu
    McGrath, Colman
    Pow, Edmond Ho Nang
    Lam, Walter Yu Hang
    [J]. JOURNAL OF PROSTHETIC DENTISTRY, 2024, 131 (06): : 1111 - 1117
  • [38] A prospective study to predict the transition from paroxysmal atrial fibrillation to chronic atrial fibrillation by signal-averaged electrocardiography
    Ogita, H
    Fukunami, M
    Shimonagata, T
    Kumagai, K
    Yamada, T
    Kim, J
    Sanada, S
    Hoki, N
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 1997, 29 (02) : 91218 - 91218
  • [39] Left atrial abnormality (LAA) as a predictor of ibrutinib-associated atrial fibrillation in patients with chronic lymphocytic leukemia
    Mato, Anthony R.
    Clasen, Suparna
    Pickens, Peter
    Gashonia, Lisa
    Rhodes, Joanna
    Svoboda, Jakub
    Hughes, Mitchell
    Nabhan, Chadi
    Ali, Naveed
    Schuster, Stephen
    Carver, Joseph
    [J]. CANCER BIOLOGY & THERAPY, 2018, 19 (01) : 1 - 2
  • [40] The performance of arti fi cial intelligence models in generating responses to general orthodontic questions: ChatGPT vs Google Bard
    Daraqel, Baraa
    Wafaie, Khaled
    Mohammed, Hisham
    Cao, Li
    Mheissen, Samer
    Liu, Yang
    Zheng, Leilei
    [J]. AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2024, 165 (06) : 652 - 662